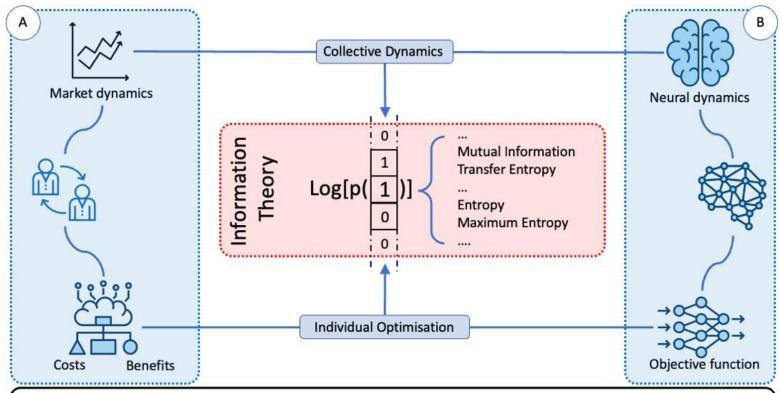
Critical Risks and Opportunities of Al, Economics, and Social Network Theory

Dr. Michael Harré Modelling and Simulation Group School of Computer Science University of Sydney

"Complexity, Criticality and Computation" Symposium C³ January 2023

Silicon Intelligence: Economics: Psychology

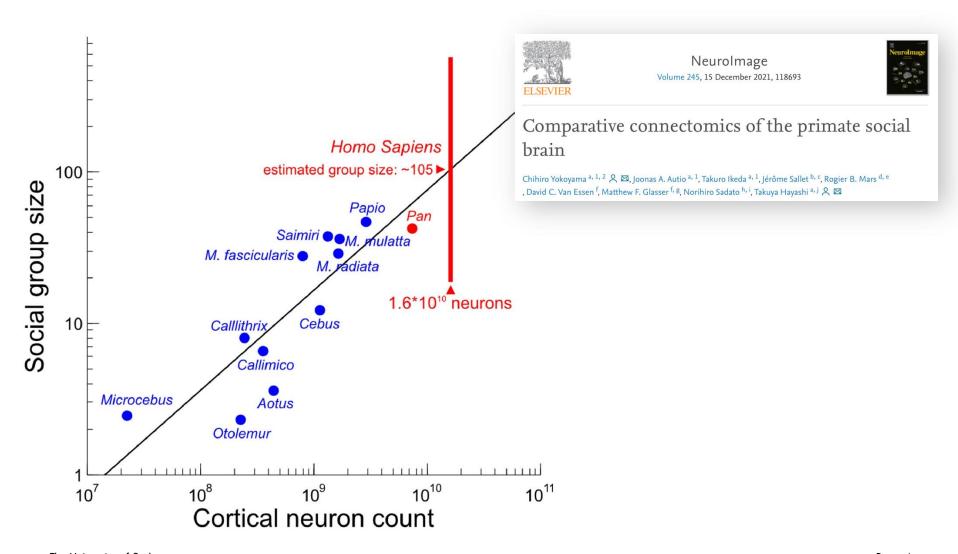


Information theory and its many roles. Box A, economics: micro-economic optimisation and market dynamics are mediated by networks of individual exchange. Box B, cognition: Al and neural dynamics borrow extensively from each other. Collective dynamics in markets and neuroscience are measured by multivariate information theory. Individual optimisation and reward divergence is measured by entropy and its maximisation.

Information Theory for Agents in Artificial Intelligence, Psychology, and Economics by Michael S. Harré Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia Entropy 2021, 23(3), 310; https://doi.org/10.3390/e23030310

Contents

- 1. Motivating Theory of Mind for Social Network Theory
- 2. Free Energy Principle for Decision Theory
- 3. Cicero's Free Energy for 'Game Theory of Mind'
- 4. Consequences of 'Game Theory of Mind' for Al

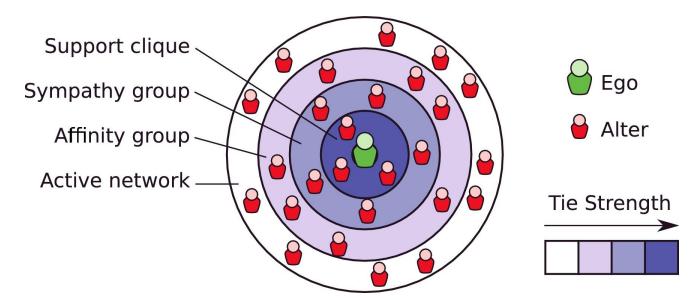


Computer Communications

Volume 76, 15 February 2016, Pages 26-41

Ego network structure in online social networks and its impact on information diffusion

Valerio Arnaboldi 💍 🖾, Marco Conti 🖾, Massimiliano La Gala 🖾, Andrea Passarella 🖾, Fabio Pezzoni 🖾



INTERFACE

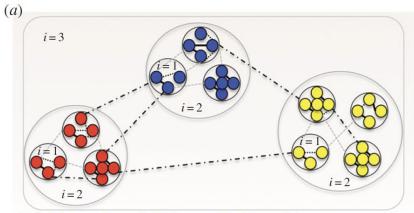
rsif.royalsocietypublishing.org

Research

The social brain: scale-invariant layering of Erdős – Rényi networks in small-scale human societies

Michael S. Harré and Mikhail Prokopenko

Complex Systems Research Group, Faculty of Engineering and IT, The University of Sydney, Sydney, Australia



dyadic links: --- support clique links: --- sympathy group links: --- layer 3 links: ---

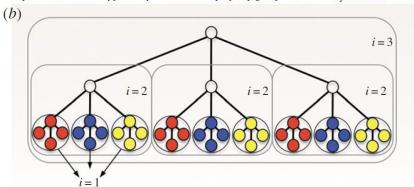


Figure 1. Two different social network models. (*a*) Random links form between sub-group members. As the average number of links per person increases in discrete steps, the network size also increases in predictable, discrete, steps. (b) A structured hierarchy similar to modern military, bureaucratic and corporate structures in which each layer is 'managed' by a coordinator. (Online version in colour.)

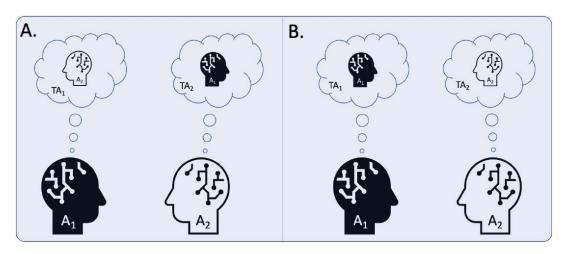


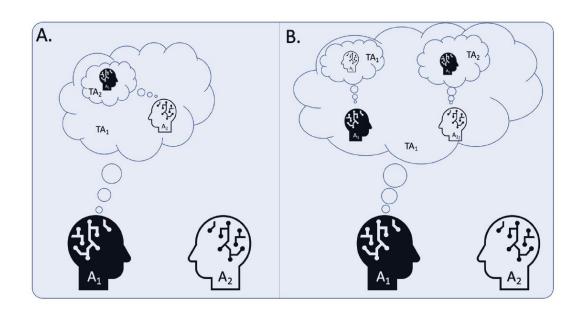
Figure 2. Left: Both agents A_1 and A_2 have a representation of the other agent's cognition (ToM). Right: Both agents have a representation of their own cognition (introspection). TA_i is a cognitive space (see for example [15,16]) in which the 'thoughts of agent i' occur.

The role of metacognition in human social interactions

Chris D. Frith ☑

Published: 05 August 2012

https://doi.org/10.1098/rstb.2012.0123



The role of metacognition in human social interactions

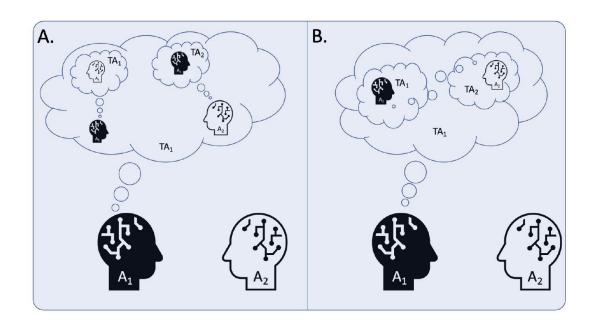
Chris D. Frith ⊠

Published: **05 August 2012** https://doi.org/10.1098/rstb.2012.0123

Game Theory of Mind

Wako Yoshida , Ray J. Dolan, Karl J. Friston

Published: December 26, 2008 • https://doi.org/10.1371/journal.pcbi.1000254



The role of metacognition in human social interactions

Published: **05 August 2012** https://doi.org/10.1098/rstb.2012.0123

Game Theory of Mind

Wako Yoshida , Ray J. Dolan, Karl J. Friston

What Can Game Theory Tell Us about an Al 'Theory of Mind'?

by 😫 Michael S. Harré 🖾 🗓

Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia

Games 2022, 13(3), 46; https://doi.org/10.3390/g13030046

Received: 30 April 2022 / Revised: 30 May 2022 / Accepted: 16 June 2022 / Published: 20 June 2022

Published: December 26, 2008 • https://doi.org/10.1371/journal.pcbi.1000254

Free Energy, Free Utility:

$$H(p) = -\sum_{x} p(x)\log(p(x))$$
 $V(p) = \text{internal energy (potential function)}$
 $F(p) = V(p) - TH(p) \text{ (where T is temperature)}$

Helmholtz Free Energy (1)

Free Energy, Free Utility:

$$H(p) = -\sum_{x} p(x)\log(p(x))$$
 $V(p) = \text{internal energy (potential function)}$
 $F(p) = V(p) - TH(p) \text{ (where } T \text{ is temperature)}$

Helmholtz Free Energy (1)

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - TH(P) \quad (T \text{ is uncertainty or error})$$
Free Utility (2 players) (2)

https://doi.org/10.2202/1935-1704.1593

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - TH(P) \quad (T \text{ is uncertainty or error})$$
Free Utility (2 players) (2)

Optimising these "free functionals" leads to standard exponential solutions:

$$P(x) \propto \exp(-\beta V(P))$$

$$P(x \mid x = x_i) \propto \exp(\beta U_a(P(y) \mid x = x_i))$$

$$P(y \mid y = y_i) \propto \exp(\beta U_b(P(x) \mid y = y_i))$$

https://doi.org/10.2202/1935-1704.1593

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127–138 (2010) Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s,o) = P(o|s)P(s)$$

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s, o) = P(o|s)P(s)$$

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

$$Q^*(s) = \underset{Q(s)}{\operatorname{argmin}} \mathcal{F}(Q)$$
 (3)

$$Q^*(s) \simeq P(s|o) \tag{4}$$

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s, o) = P(o|s)P(s)$$

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

$$Q^*(s) = \underset{Q(s)}{\operatorname{argmin}} \mathcal{F}(Q)$$
 (3)

$$Q^*(s) \simeq P(s|o) \tag{4}$$

$$\mathcal{F}(Q) = E_Q[\log(Q(s)) - \log(P(s|o))]$$
 (5)

$$= \underbrace{E_{Q}(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$
(6)

The three ideas to take away from this section:

$$\mathcal{F}(Q) = E_{Q}[\log(Q(s)) - \log(P(s|o))]$$

$$= \underbrace{E_{Q}(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$

note: Grunwald and Dawid showed that this is a "game" between nature and decision maker (2004)

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

PD Grünwald, AP Dawid - the Annals of Statistics, 2004 - projecteuclid.org

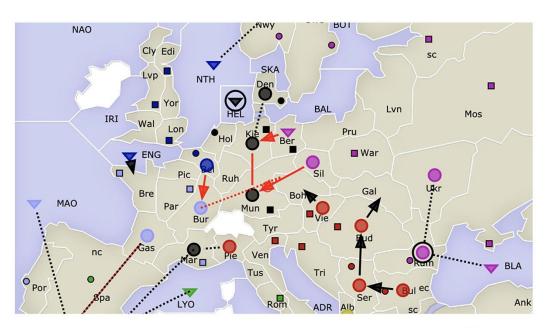
$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - TH(P) \text{ (T is uncertainty or error)}$$

Optimising these "free functionals" leads to standard exponential solution

The game of "Diplomacy" and the Al Cicero that learned to play like a human



Diplomacy is a 61-year-old board game about taking over Europe. It's a true classic - highly influential, intensely beloved and widely acclaimed - and the first time I played it, I thought it was rubbish.

In Diplomacy, each player controls one of seven nations at the start of the 20th century, submitting movement orders to their armies and fleets each turn in order to gain new territories and thereby build more troops - the goal being to control 18 of the game's supply cities at the same time. Its rules are simple enough to make Risk look fiendishly difficult and yet, all the same, it is an extremely nuanced game of strategy and cunning. (JFK apparently enjoyed the game, as did Henry Kissinger.)

About Diplomacy

Released: 1959

Players: 2-7

Playing time: 360 mins

Rules complexity: Very low

Strategic depth: High

The game of "Diplomacy" and the Al Cicero that learned to play like a human

/MachineLearning @slashML · Dec 8

We're the Meta AI research team behind CICERO, the first AI agent to achieve human-level performance in the game Diplomacy. We'll be answering your questions on December 8th starting at 10am PT. Ask us anything! #ai #diplomacy

reddit.com

[D] We're the Meta AI research team behind CICER...

PROOF: [https://i.redd.it/8skvttie6j4a1.png] (https://i.redd.it/8skvttie6j4a1.png) We're part of ...

1

① 11

42

土

The game of "Diplomacy" and the Al Cicero that learned to play like a human

Yann LeCun @ylecun · Nov 23

Big AI milestone today: CICERO, an AI agent that can negotiate and cooperates with people.

It is the first **AI** system to achieve human-level performance in the popular strategy game Diplomacy.

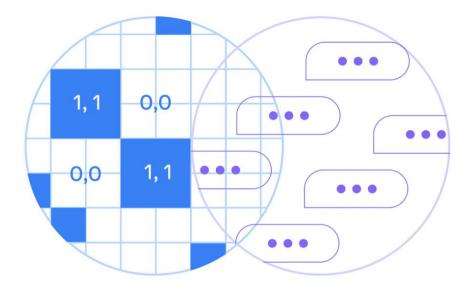
Cicero ranked in the top 10 of participants on webDiplomacy.net

Meta Al @ Meta Al · Nov 23

Meta AI presents CICERO — the first AI to achieve human-level performance in Diplomacy, a strategy game which requires building trust, negotiating and cooperating with multiple players.

Learn more about #CICERObyMetaAl: bit.ly/3GBwLzx

The game of "Diplomacy" and the Al Cicero that learned to play like a human



Strategic Reasoning

CICERO predicts the moves other players are likely to make, as well as what moves they expect CICERO to make, and uses that information to create a strategic plan.

Natural Language Processing

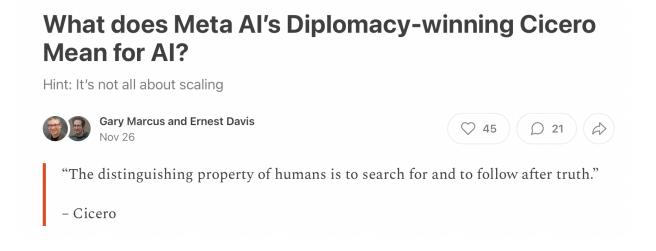
CICERO grounds its conversations in a set of carefully chosen plans, so it can negotiate, offer advice, share information, and make agreements with other players.

The game of "Diplomacy" and the Al Cicero that learned to play like a human

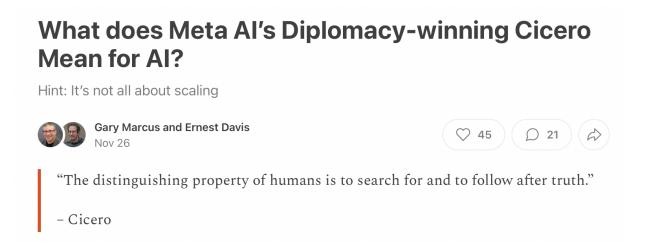
Example of coordination - CICERO is AUSTRIA

Fig. 6. Successful dialogue examples.

The game of "Diplomacy" and the Al Cicero that learned to play like a human



The game of "Diplomacy" and the Al Cicero that learned to play like a human



Diplomacy, a complex game that requires extensive communication, has been recognized as a challenge for AI for at least <u>fifty years</u>. To win, a player must not only play strategically, but form alliances, negotiate, persuade, threaten, and occasionally deceive. It therefore presents challenges for AI that are go far beyond those faced either by systems that play games like Go and chess or by chatbots that engage in dialog in less complex settings.



piKL: KL-regularized planning

piKL assumes player i seeks a policy π_i that maximizes the modified utility function

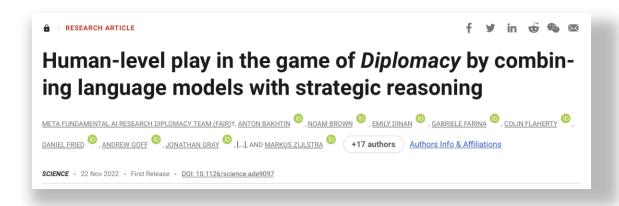
$$U_i(\pi_i, \pi_{-i}) = u_i(\pi_i, \pi_{-i}) - \lambda D_{KL}(\pi_i \parallel \tau_i)$$
(1)

where π_{-i} represents the policies of all players other than i, and $u_i(\pi_i, \pi_{-i})$ is the expected value of π_i given that other players play π_{-i} . Specifically, let $Q_i^{t-1}(a_i) = u_i(a_i, \pi_{-i}^{t-i})$ and let

$$\pi_i^{\Delta t}(a_i) \propto \tau_i(a_i) \exp\left[\frac{Q_i^{t-1}(a_i)}{\lambda}\right]$$
 (2)

On each iteration t, piKL updates its prediction of the players' joint policies to be

$$\pi^{t} = \left(\frac{t-1}{t}\right)\pi^{t-1} + \left(\frac{1}{t}\right)\pi^{\Delta t} \tag{3}$$



Cisero's equivalent of Free Energy is:

$$U(\pi_i, \pi_{-i}) = u(\pi_i, \pi_{-i}) + \lambda D_{KL}(\pi_i \mid \tau_i)$$
 (12)

$$= u(\pi_{i}, \pi_{-i}) + \lambda \left(\underbrace{-H(\pi_{i}) + H(\pi_{i}, \tau_{i})}_{\text{Entropy}} \right)$$

$$\underbrace{-H(\pi_{i}, \pi_{i}) + H(\pi_{i}, \tau_{i})}_{\text{Log-loss game}}$$
(13)

$$= \underbrace{u(\pi_i, \pi_{-i}) + \lambda(\underline{-H(\pi_i)} + \underline{H(\pi_i, \tau_i)})}_{\text{Entropy}} + \underbrace{H(\pi_i, \tau_i)}_{\text{cross entropy}}$$
 (14)

The takeaway for this section:

- Successful strategically interacting Als are using a (simple) form of ToM
- Strategy is only one part of the solution
- Also need a language model, a filter, and human fine-tuning of opening gambit
- Requires grounding in an "objective" world
- And ... only 1 player suspected they were interacting with an Al

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems

by (2) Jaime Ruiz-Serra (10) and (2) Michael S. Harré * (11)

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, NSW 2006, Australia

* Author to whom correspondence should be addressed.

Algorithms 2023, 16(2), 68; https://doi.org/10.3390/a16020068 (registering DOI)

Received: 16 December 2022 / Revised: 13 January 2023 / Accepted: 16 January 2023 /

Published: 19 January 2023

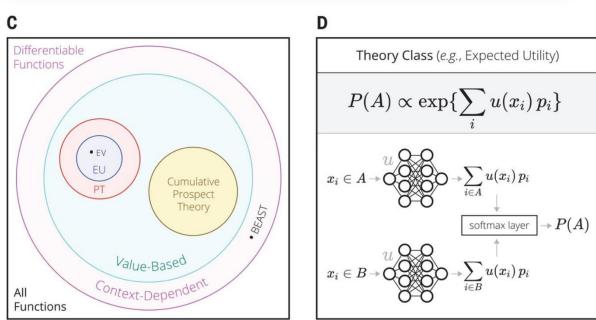


Fig. 1 Applying large-scale experimentation and theory-driven machine learning to risky choice.

Theory of Mind is only one aspect

- Cicero has a complex, integrative, architecture
- Scaling up an Al doesn't give us ToM by default: Al scaling hypothesis is probably wrong
- The human brain is modular with interacting functions

The modular and integrative functional architecture of the human brain

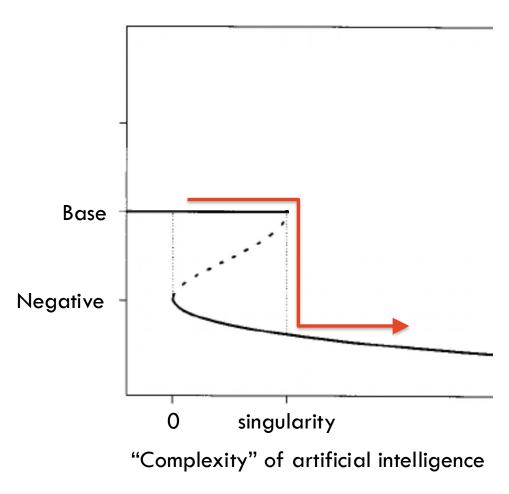
Maxwell A. Bertolero^{a,b,1}, B. T. Thomas Yeo^{c,d,e,f}, and Mark D'Esposito^{a,b}

^aHelen Wills Neuroscience Institute, University of California, Berkeley, CA 94720; ^bDepartment of Psychology, University of California, Berkeley, CA 94720; ^cDepartment of Electrical and Computer Engineering, National University of Singapore, Singapore 119077; ^dClinical Imaging Research Centre, National University of Singapore, Singapore 117456; and ^fMemory Networks Programme, National University of Singapore, Singapore, Singapore, Singapore, Singapore, Singapore, Singapore, National University of Singapore, Singa

Edited by Michael S. Gazzaniga, University of California, Santa Barbara, CA, and approved October 23, 2015 (received for review May 29, 2015)

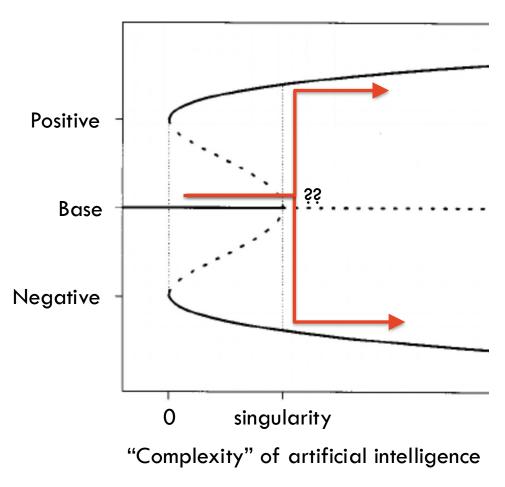
"... we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task."

The pessimist view



I, Robot (2004, 20th Century Fox)

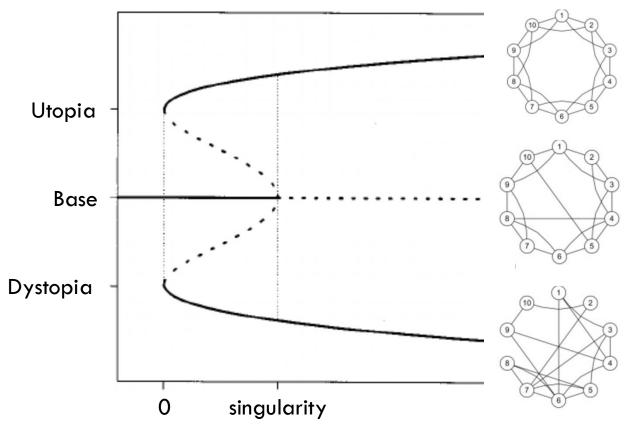
A bet both ways: "Sensitive intervention points" (J.D. Farmer et al, 2019)



Bicentennial Man (1999, Touchstone Pictures)

I, Robot (2004, 20th Century Fox)

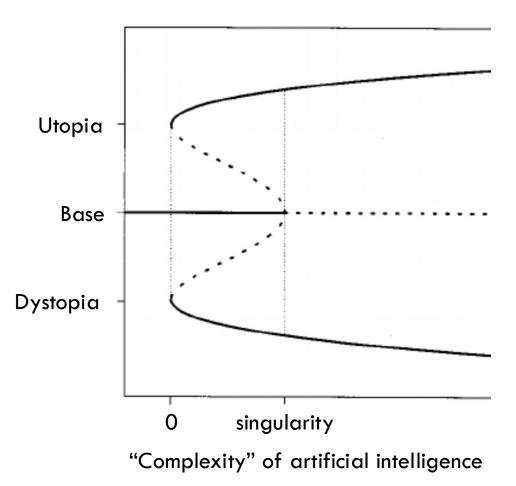
A bet both ways: "Sensitive intervention points" (J.D. Farmer et al, 2019)



Same agents, different relationships, different global outcomes

"Complexity" of artificial intelligence

A bet both ways: "Sensitive intervention points" (J.D. Farmer et al, 2019)



4. Some Consequences of Al and ToM based Social

Physics of Life Reviews
Volume 31, December 2019, Pages 134-156

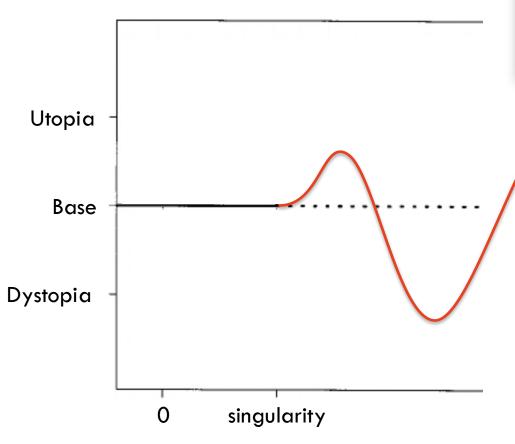
Self-referential basis of undecidable dynamics: From the Liar paradox and the halting problem to

Mikhail Prokopenko a 💍 🖾 , Michael Harré a, Joseph Lizier a, Fabio Boschetti b, Pavlos Peppas c, d, Stuart Kauffman e

the edge of chaos

Interactions

The future is weird (not computable)



"Complexity" of artificial intelligence

4. Some Consequences of Al and ToM based Social

Interactions

Physics of Life Reviews
Volume 31, December 2019, Pages 134-156

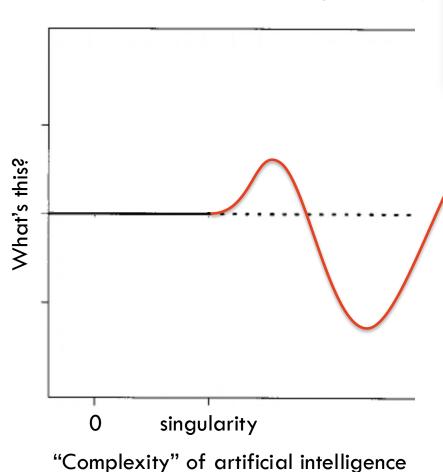
ble dynamics: alting problem to

ti ^b, Pavlos Peppas ^{c, d}, Stuart Kauffman ^e

4. Some Consequences of Al and ToM based Social

Interactions

The future is weird (not computable)



Physics of Life Reviews
Volume 31, December 2019, Pages 134-156

Review

Self-referential basis of undecidable dynamics: From the Liar paradox and the halting problem to the edge of chaos

Mikhail Prokopenko ^a 🔼 🖾 , Michael Harré ^a, Joseph Lizier ^a, Fabio Boschetti ^b, Pavlos Peppas ^{c, d}, Stuart Kauffman ^e

References

- 1. Grünwald, P. D., & Dawid, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Ann. Statist. 32 (4) 1367 1433, August 2004. https://doi.org/10.1214/009053604000000553.
- 2. Friston, K. (2006). A free energy principle for the brain. Journal of Physiology-Paris, 100(1-3), 70-87. https://doi.org/10.1016/j.jphysparis.2006.10.001
- 3. META, A Bakhtin, N Brown, E Dinan, et al. (2022). Human-level play in the game of Diplomacy by combining language models with strategic reasoning. Science, 378(6624), 1067–1074. https://doi.org/10.1126/science.ade9097
- 4. J. D. FARMER, C. HEPBURN, M. C. IVES, T. HALE, T. WETZER, P. MEALY, R. RAFATY, S. SRIVASTAV, AND R. WAY (2019). Sensitive intervention points in the post-carbon transition. Science, 364(6436), 132–134. https://doi.org/10.1126/science.aaw7287
- 5. Harré, M. S. (2025). From Firms to Computation: Al Governance and the Evolution of Institutions. arXiv preprint. https://arxiv.org/abs/2507.13616
- 6. Harré, M. S., Ruiz-Serra, J., & Drysdale, C. (2024). Artificial Theory of Mind and Self-Guided Social Organisation. arXiv preprint arXiv:2411.09169. https://arxiv.org/abs/2411.09169
- 7. Harré, M. S., Drysdale, C., & Ruiz-Serra, J. (2024). An Al Theory of Mind Will Enhance Our Collective Intelligence. arXiv preprint arXiv:2411.09168. https://arxiv.org/abs/2411.0916
- Ruiz-Serra, J., Sweeney, P., & Harré, M. S. (2025). Factorised Active Inference for Strategic Multi-Agent Interactions. AAMAS '25 https://arxiv.org/abs/2411.07362
- Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://www.nature.com/articles/nrn2787
- 10. Simon, H. A. (1997). Administrative Behavior: A Study of Decision-Making Processes in Administrative Organizations (4th ed.). Free Press. [Original work published 1947]
- 11. Rabinowitz, N. C., Perbet, F., Song, F., Zhang, C., Eslami, S. M. A., & Botvinick, M. (2018). Machine Theory of Mind. Proceedings of the 35th International Conference on Machine Learning (ICML 2018), 80, 4218–4227. https://proceedings.mlr.press/v80/rabinowitz18a.html
- 12. Kosinski, M. (2023). Theory of Mind May Have Spontaneously Emerged in Large Language Models. PNAS, 120(6), e2218523120. https://doi.org/10.1073/pngs.2218523120
- 13. Harré, M. S., & El-Tarifi, H. (2024). Testing Game Theory of Mind Models for Artificial Intelligence. Games, 15(1), 1. https://doi.org/10.3390/g15010001
- 14. Ruiz-Serra, J., & Harré, M. S. (2023). Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems. Algorithms, 16(2), 68. https://doi.org/10.3390/a16020068
- 15. Harré, M. S. (2022). What Can Game Theory Tell Us About an Al 'Theory of Mind'? Games, 13(3), 46. https://doi.org/10.3390/g13030046
- 16. Harré, M. S., & Prokopenko, M. (2016). The social brain: Scale-invariant layering of Erdős—Rényi networks in small-scale human societies. Journal of the Royal Society Interface, 13(118), 20160044. https://doi.org/10.1098/rsif.2016.0044

Questions

