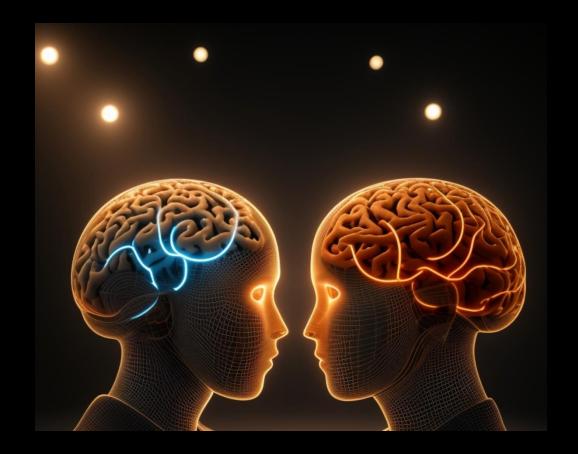
A Free Energy Principle
Approach to Expert
Perception in Complex
Tasks

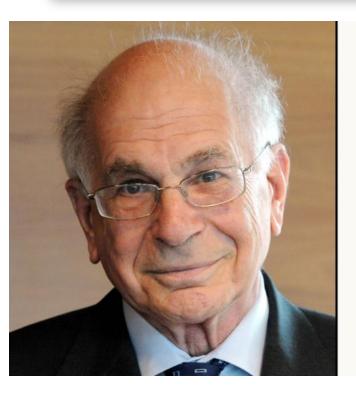
Emerging Aspirations Workshop, Sept. 2023

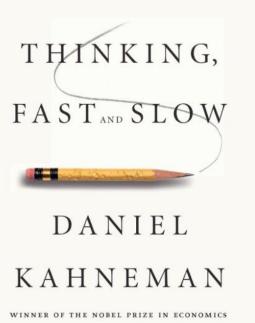
Dr. Michael Harré



Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition

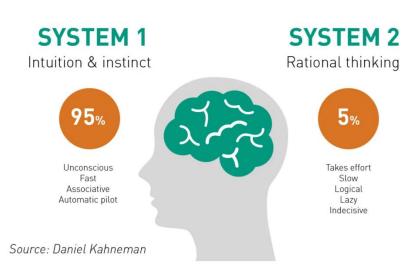
Jonathan St. B. T. Evans Annu. Rev. Psychol. 2008. 59:255–78





Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition

Ionathan St. B. T. Evans Annu. Rev. Psychol. 2008. 59:255–78



Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition

Ionathan St. B. T. Evans Annu. Rev. Psychol. 2008. 59:255–78

SYSTEM 1

Intuition & instinct

Unconscious Fast Associative Automatic pilot

Rational thinking

Takes effort Logical Lazy Indecisive

System 1	System 2		
Cluster 1 (Consciousness)			
Unconscious (preconscious)	Conscious		
Implicit	Explicit		
Automatic	Controlled		
Low effort	High effort		
Rapid	Slow		
High capacity	Low capacity		
Default process	Inhibitory		
Holistic, perceptual	Analytic, reflective		
Cluster 2 (Evolution)			
Evolutionarily old	Evolutionarily recent		
Evolutionary rationality	Individual rationality		
Shared with animals	Uniquely human		
Nonverbal	Linked to language		
Modular cognition	Fluid intelligence		
Cluster 3 (Functional characteristics)			
Associative	Rule based		
Domain specific	Domain general		
Contextualized	Abstract		
Pragmatic	Logical		
Parallel	Sequential		
Stereotypical	Egalitarian		
Cluster 4 (Individual differences)			
Universal	Heritable		
Independent of general intelligence	dent of general intelligence Linked to general intelligence		
Independent of working memory	Limited by working memory capacity		

Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition

Ionathan St. B. T. Evans Annu. Rev. Psychol. 2008. 59:255–78

SYSTEM 1

Intuition & instinct

Unconscious Fast Associative Automatic pilot

SYSTEM 2

Rational thinking

Tal	kes effort	t
ı	Slow _ogical	
	Lazy decisive	
.111	decisive	

System 1	System 2	
Cluster 1 (Consciousness)		
Unconscious (preconscious)	c) Conscious	
Implicit	Explicit	
Automatic	Controlled	
Low effort	High effort	
Rapid	Slow	
High capacity	Low capacity	
Default process	Inhibitory	
Holistic, perceptual	Analytic, reflective	
Cluster 2 (Evolution)		
Evolutionarily old	Evolutionarily recent	
Evolutionary rationality	Individual rationality	
Shared with animals	Uniquely human	
Nonverbal	Linked to language	
Modular cognition	Fluid intelligence	
Cluster 3 (Functional characteristics)		
Associative	Rule based	
Domain specific	Domain general	
Contextualized	Abstract	
Pragmatic	Logical	
Parallel	Sequential	
Stereotypical	Egalitarian	
Cluster 4 (Individual differences)		
Universal	rsal Heritable	
Independent of general intelligence	Linked to general intelligence	
Independent of working memory Limited by working memory		

Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition

Ionathan St. B. T. Evans Annu. Rev. Psychol. 2008. 59:255–78

SYSTEM 1

Intuition & instinct

Unconscious Fast Associative Automatic pilot

Source: Daniel Kahneman

SYSTEM 2

Rational thinking

Takes effort Logical Lazy Indecisive

System 1	System 2	
Cluster 1 (Consciousness)		
Unconscious (preconscious)	Conscious	
Implicit	Explicit	
Automatic	Controlled	
Low effort	High effort	
Rapid	Slow	
High capacity	Low capacity	
Default process	Inhibitory	
Holistic, perceptual	Analytic, reflective	
Cluster 2 (Evolution)		
Evolutionarily old	Evolutionarily recent	
Evolutionary rationality	Individual rationality	
Shared with animals	Uniquely human	
Nonverbal	Linked to language	
Modular cognition	Fluid intelligence	

Cluster 3 (Functional characteristics)		
Associative	Rule based	
Domain specific	Domain general Abstract Logical Sequential Egalitarian	
Contextualized		
Pragmatic		
Parallel		
Stereotypical		

Cluster 4 (Individual differences)		
Universal	Heritable	
Independent of general intelligence	Linked to general intelligence	
Independent of working memory	Limited by working memory capacity	

Dual-Processing Accounts of Reasoning, Judgment, and Social Cognition

Ionathan St. B. T. Evans Annu. Rev. Psychol. 2008. 59:255–78

SYSTEM 1

Intuition & instinct

Unconscious Fast Associative Automatic pilot

Source: Daniel Kahneman

SYSTEM 2

Rational thinking

Takes effort Logical Lazy Indecisive

System 1	System 2	
Cluster 1 (Consciousness)		
Unconscious (preconscious)	Conscious	
Implicit	Explicit	
Automatic	Controlled	
Low effort	High effort	
Rapid	Slow	
High capacity	Low capacity	
Default process	Inhibitory	
Holistic, perceptual	Analytic, reflective	
Cluster 2 (Evolution)		
Evolutionarily old	Evolutionarily recent	
Evolutionary rationality	Individual rationality	
Shared with animals	animals Uniquely human	
Nonverbal	Linked to language	
Modular cognition	Fluid intelligence	
Cluster 3 (Functional characteristics)		
Associative	Rule based	
Domain specific	Domain general	
Contextualized	Abstract	
Pragmatic	c Logical	
Parallel	Sequential	
tereotypical Egalitarian		
Cluster 4 (Individual differences)		
Universal	Heritable	
Independent of general intelligence	of general intelligence Linked to general intelligence	
Independent of working memory	Limited by working memory capacity	

Cluster 4 (Individual differences)	ster 4 (Individual differences)		
Universal	Heritable Linked to general intelligence		
Independent of general intelligence			
Independent of working memory	Limited by working memory capacity		

Dual processes are used in complex tasks:

- No 'normative' solution
- Optimisation is difficult/impossible
- Noisy and/or ambiguous information
- Non-trivial but sparse structures in the environment
- Little direct access to our cognitive strategies
- A huge amount of data is still insufficient data for exact solutions

Published: 09 April 2011

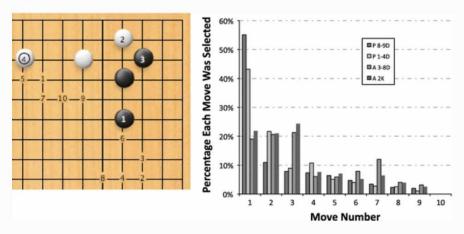
The Development of Human Expertise in a Complex Environment

Michael Harré , Terry Bossomaier & Allan Snyder

Minds and Machines 21, 449–464 (2011) Cite this article

Fig. 6

From: The Development of Human Expertise in a Complex Environment



The board state and probability distributions over the next moves. *Top* One of the joseki showing the first six stones played in the local area by 8-9Dan professionals. *Bottom* Four example histograms of the frequency each of the ten moves might follow. Note the order of the moves on the *horizontal axis* in this plot is with respect to the 8-9Dan professionals, i.e. the most preferred move, labelled '1', is most preferred by the 8-9Dan professionals, the move labelled '2' is the second most preferred by these

Published: 24 March 2011

The aggregate complexity of decisions in the game of Go

M. S. Harré , T. Bossomaier, A. Gillett & A. Snyder

The European Physical Journal B 80, 555–563 (2011) | Cite this article

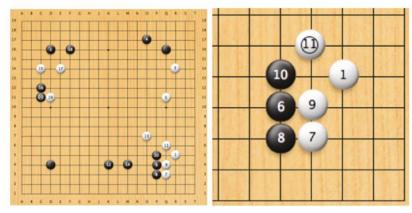
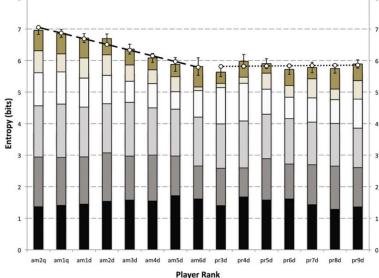


Fig. 1. (Color online) Left: the first 20 moves in a game of Go. Right: Stones played in a 7×7 region in the lower right corner, the numbers record the order in which they were played (moves 2 to 5 were played elsewhere on the board).

Cummulative Average Move Entropy



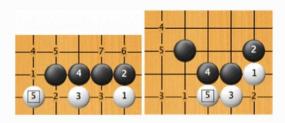
Published: 09 April 2011

The Development of Human Expertise in a Complex Environment

Michael Harré , Terry Bossomaier & Allan Snyder

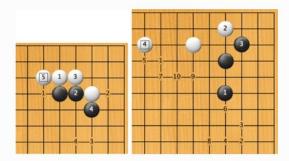
Minds and Machines 21, 449–464 (2011) | Cite this article

Fig. 1



The two smallest patterns used. The starting pattern (the *two black un-numbered stones*) on the *left* is called 'skip one' and the starting pattern on the *right* is called 'knight's move' in Reitman's study

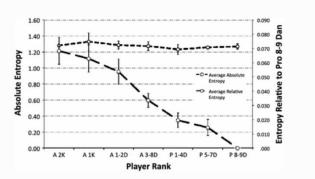
Fig. 2



The two mid-sized patterns used. The pattern on the *left* is a variation of the 'avalanche' joseki and the pattern on the *right* is a variation of the '4–4 point low approach high extension' joseki. Note that the board is bounded by the corner in these patterns so that they only ever occur in the corner of the board, unlike the smaller patterns in Fig. 1 that may occur anywhere on the board, including the corners

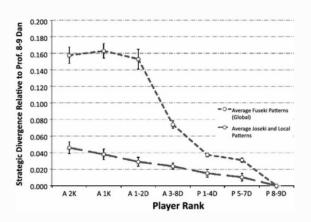
The University of Sydney

Fig. 3



$$\widetilde{K}(p_1(x), p_2(x)) = \sum_{x_i \in X} p_1(x_i) \log \left[\frac{2p_1(x_i)}{[p_1(x_i) + p_2(x_i)]} \right]$$

Fig. 4



The strategic divergence for global and local patterns. Errors are \pm s.e.m

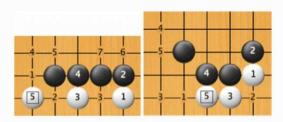
Published: 09 April 2011

The Development of Human Expertise in a Complex Environment

Michael Harré M, Terry Bossomaier & Allan Snyder

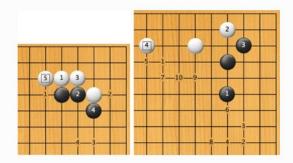
Minds and Machines 21, 449-464 (2011) | Cite this article

Fig. 1



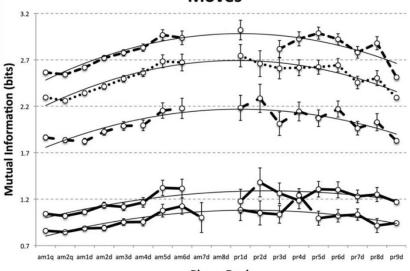
The two smallest patterns used. The starting pattern (the *two black un-numbered stones*) on the *left* is called 'skip one' and the starting pattern on the *right* is called 'knight's move' in Reitman's study

Fig. 2



The two mid-sized patterns used. The pattern on the *left* is a variation of the 'avalanche' joseki and the pattern on the *right* is a variation of the '4–4 point low approach high extension' joseki. Note that the board is bounded by the corner in these patterns so that they only ever occur in the corner of the board, unlike the smaller patterns in Fig. 1 that may occur anywhere on the board, including the corners

Mutual Information Between Successive Moves



Player Rank

 $- \circ \cdot |(m1|m2) - \circ - |(m1m2|m3) - \circ - |(m1m2m3|m4) - \circ - |(m1m2m3m4|m5) - \circ - |(m1m2m3m4m5|m6) - |(m1m2m3m5|m6) - |(m1m2m3m5|m6$

Fig. 4. Mutual information between successive moves.

$$I(x_1; x_2, \rho) = -0.0026\rho^2 + 0.0587\rho + 0.7445$$

$$I(\{x_1, x_2\}; x_3, \rho) = -0.0029\rho^2 + 0.0657\rho + 1.0317$$

$$I(\{x_1, \dots, x_3\}; x_4, \rho) = -0.0037\rho^2 + 0.0765\rho + 2.0085$$

$$I(\{x_1, \dots, x_4\}; x_5, \rho) = -0.0039\rho^2 + 0.0792\rho + 2.3886$$

$$I(\{x_1, \dots, x_5\}; x_6, \rho) = -0.0037\rho^2 + 0.0794\rho + 2.6319$$

⁷ For this purpose we set the following integer values for ρ (rank): am2q = 1, am1q = 2, ..., pr9d = 19.

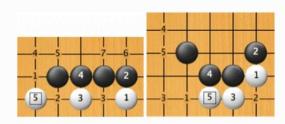
Published: 09 April 2011

The Development of Human Expertise in a Complex Environment

Michael Harré , Terry Bossomaier & Allan Snyder

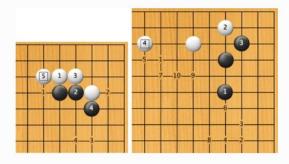
Minds and Machines 21, 449–464 (2011) Cite this article

Fig. 1

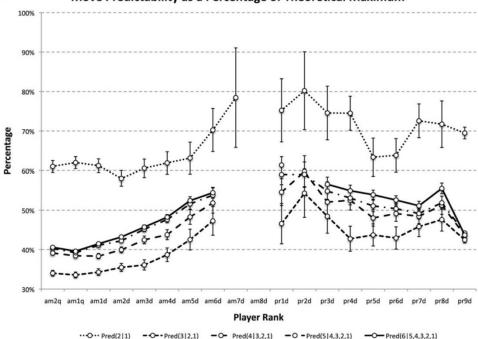


The two smallest patterns used. The starting pattern (the $two\ black\ un$ -numbered stones) on the left is called 'skip one' and the starting pattern on the right is called 'knight's move' in Reitman's study

Fig. 2



The two mid-sized patterns used. The pattern on the left is a variation of the 'avalanche' joseki and the pattern on the right is a variation of the '4–4 point low approach high extension' joseki. Note that the board is bounded by the corner in these patterns so that they only ever occur in the corner of the board, unlike the smaller patterns in Fig. 1 that may occur anywhere on the board, including the corners



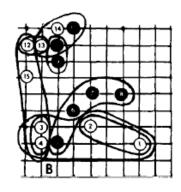
Experimentally derived "Chunks" in Go

COGNITIVE PSYCHOLOGY 8, 336-356 (1976)

Skilled Perception in Go: Deducing Memory Structures from Inter-Response Times

JUDITH S. REITMAN

PERCEPTION IN GO



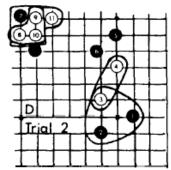
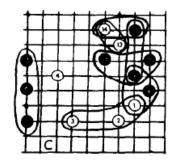
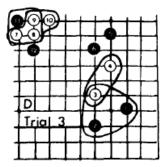


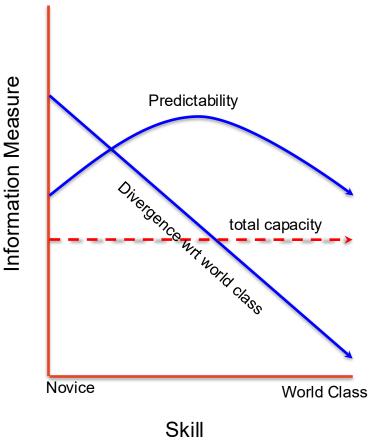
FIG. 6. Examples of the Go Master's penciled partitioning of meaningful patterns and the orders in which he recalled the elements.





The general trends observed on the way to being "world class"

Unexpected linearities & non-linearities



Other factors that seemed relevant:

- Large span memory: So many details remembered so well

Research Article

VISUAL SPAN IN EXPERT CHESS PLAYERS: Evidence From Eye Movements

Eyal M. Reingold, Neil Charness, Marc Pomplun, and Dave M. Stampe

¹University of Toronto, Toronto, Ontario, Canada, and ²Florida State University

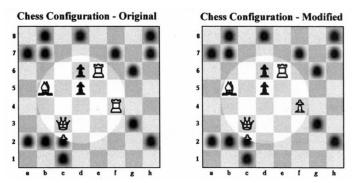


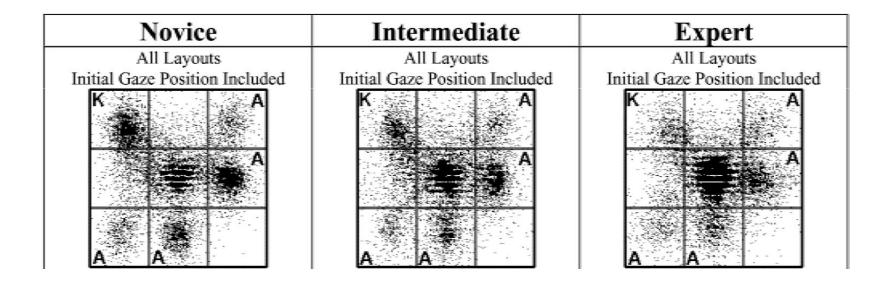
Fig. 1. Illustration of the flicker paradigm. The top row displays an original and a modified (the changed piece is in square f4) chess configuration taken from an actual game. The bottom row displays an original and a modified (the changed piece is in square b2) random configuration obtained by scrambling an actual game configuration. In all four displays, a gaze-contingent window is present, with chess pieces outside the window being replaced by blobs masking their identity and color. (The difference in luminance between the regions inside and outside the window was not present in actual experimental displays and was added here for illustrative purposes.)

Visual foraging: amateurs yes, experts less so

Experts: didn't saccade $\sim 1.6\%$ of the time

- Intermediates: didn't saccade ~3% of the time

- Novices: didn't saccade $\sim 2\%$ of the time

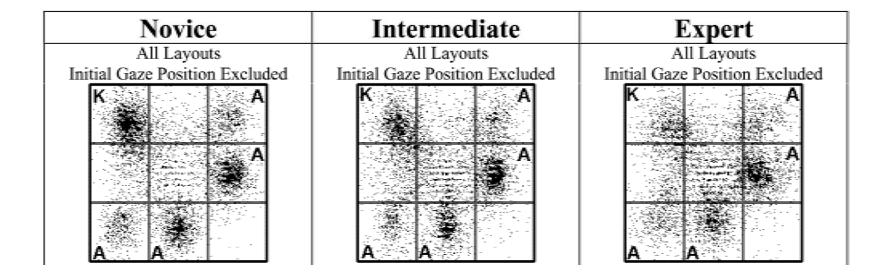


Visual foraging: amateurs yes, experts less so

- Experts: didn't saccade $\sim 16\%$ of the time

- Intermediates: didn't saccade ~3% of the time

- Novices: didn't saccade $\sim 2\%$ of the time



Visual foraging: amateurs yes, experts less so

- Experts: didn't saccade $\sim 16\%$ of the time

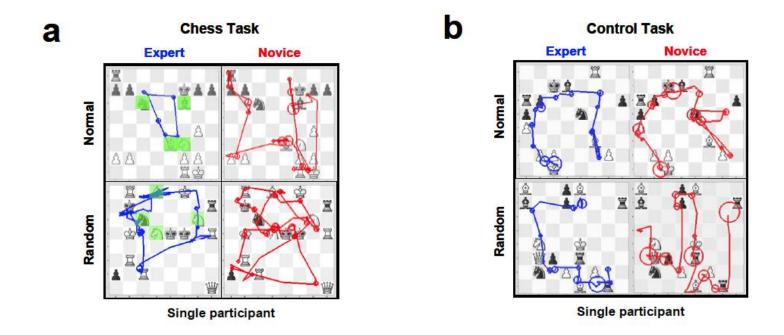
- Intermediates: didn't saccade $\sim 3\%$ of the time

- Novices: didn't saccade $\sim 2\%$ of the time

	Novice	Intermediate	Expert
Γ	Selected Layout	Selected Layout	Selected Layout
	Initial Gaze Position Excluded	Initial Gaze Position Excluded	Initial Gaze Position Excluded
	K	K	K

Eye saccades change with expertise and goals:

Experts perceive the environment differently: Expert versus novice eye saccades¹



¹ M. Bilalic et al. "Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts" (2010)

Eye saccades change with expertise and goals:

Experts perceive the environment differently: Expert versus novice eye saccades¹

"Experts' extensive knowledge facilitates <u>immediate pattern recognition by directing experts</u> toward the relevant objects and allowing them to ignore irrelevant ones."



Object Perception as Bayesian Inference

Annual Review of Psychology

Vol. 55:271-304 (Volume publication date 4 February 2004) First posted online on October 6, 2003 https://doi.org/10.1146/annurev.psych.55.090902.142005

Daniel Kersten

Pascal Mamassian

Alan Yuille

Annual Review of Neuroscience

Integration of Feedforward and Feedback Information Streams in the Modular Architecture of Mouse Visual Cortex

Andreas Burkhalter, Rinaldo D. D'Souza, Weiqing Ji, Andrew M. Meier

Annu. Rev. Neurosci. 2023, 46:259-80

Perceptual Learning: Toward a Comprehensive Theory

Takeo Watanabe and Yuka Sasaki

Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island 02912; email: Takeo_Watanabe@Brown.edu

Annu. Rev. Psychol. 2015. 66:197-221

Eye saccades change with expertise and goals:

The Active Inference solution to this problem

HYPOTHESIS AND THEORY published: 14 June 2016 doi: 10.3389/fncom.2016.00056

Scene Construction, Visual Foraging, and Active Inference

M. Berk Mirza^{1*}, Rick A. Adams^{2,3}, Christoph D. Mathys^{1,4,5} and Karl J. Friston¹

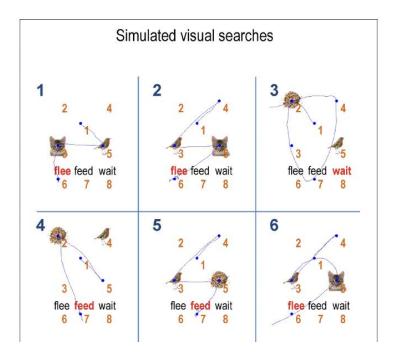
Eye saccades change with expertise and goals:

The Active Inference solution to this problem

HYPOTHESIS AND THEORY published: 14 June 2016 doi: 10.3389/fncom.2016.00056

Scene Construction, Visual Foraging, and Active Inference

M. Berk Mirza^{1*}, Rick A. Adams^{2,3}, Christoph D. Mathys^{1,4,5} and Karl J. Friston¹



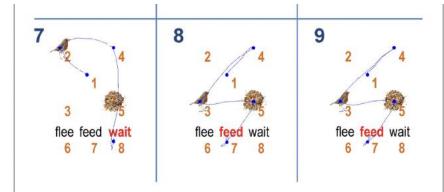
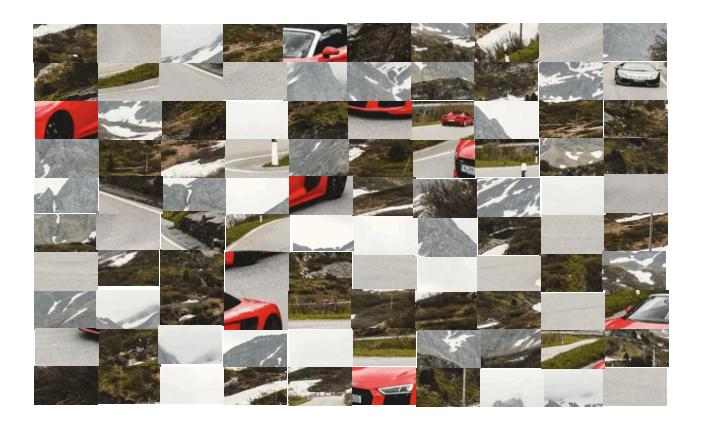


FIGURE 7 | Sequences of saccades: this figure illustrates the behavior for the first nine trials shown in the previous figure using the same format as Figure 4 (upper right panel). The numbers on the top left in each cell show the trial number. With the exception of the third trial, the agent is able to recognize or categorize the scene after a small number of epistemically efficient saccades.

Making a "decision": how many cars are in this picture?



Making a "decision": how many cars are in this picture?

Making a "decision": how many cars are in this picture?

Visual Functions of Primate Area V4

Annual Review of Vision Science

Vol. 6:363-385 (Volume publication date September 2020) First published as a Review in Advance on June 24, 2020 https://doi.org/10.1146/annurev-vision-030320-041306

Anitha Pasupathy, 1,2 Dina V. Popovkina, 3 and Taekjun Kim 1,2

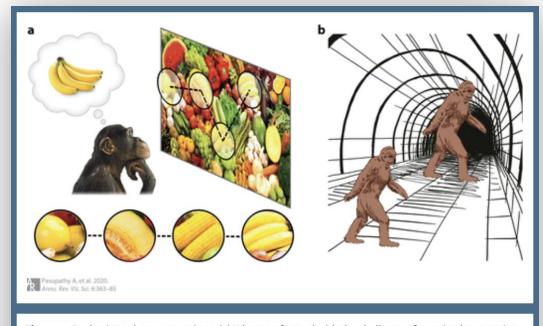


Figure 7 Goal-oriented representations. (a) When confronted with the challenge of spotting bananas in a cluttered produce aisle, the subject may saccade to different locations with yellow objects (*dashed trajectory*) and compare the shape of the object at the attentional focus (*circles*) with a remembered object. Area V4 is thought to be important for all aspects of this process. (b) Size illusion. The retinal sizes of the two sasquatches in this image are identical, but the perceived sizes are dramatically different. This is because the surrounding context suggests that the sasquatch at right is farther away from the observer; thus, the same retinal size would imply a much larger sasquatch farther away.

Visual foraging is enough in unstructured environs

- 1. Local pattern matching is as good as possible in unstructured environs;
- 2. Consequently, foraging is necessary in such situations.

But for "complex" decisions:

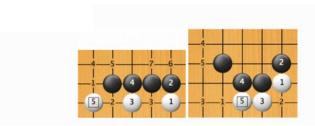
- 1. Experts' saccades systematically vary in task relevant contexts;
- 2. This largely vanishes if the structure is removed;
- 3. Sometimes experts (natural or trained) don't saccade;
- 4. "Whole of scene" perception can be enough.

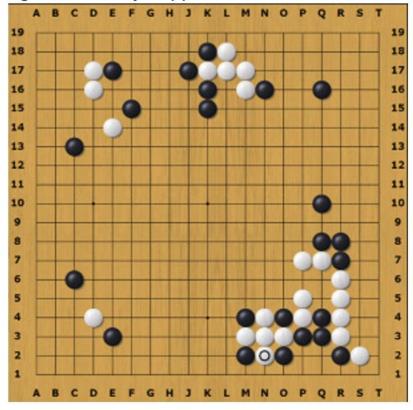
There is a data problem for human (and machine) learning

The problem: pattern matching doesn't scale up to a whole board

Local: very common

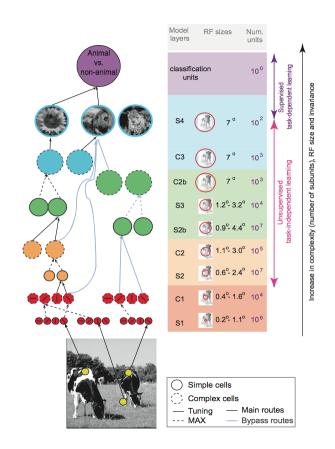
Global: very(!) uncommon

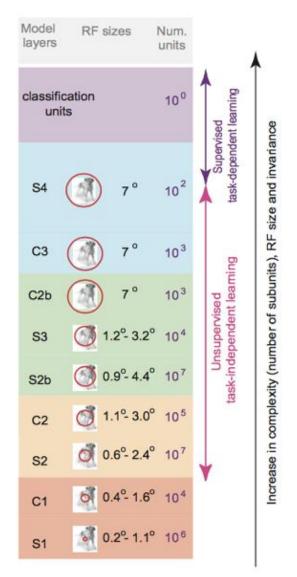




There is a data problem for human (and machine) learning

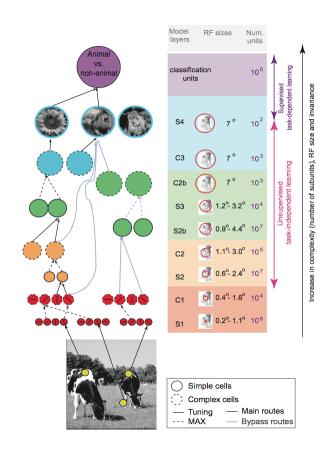
Serre et al's hierarchical model of vision:

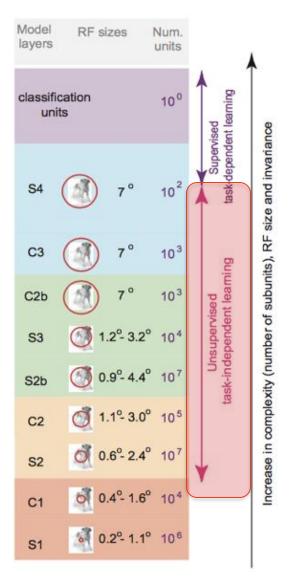




There is a data problem for human (and machine) learning

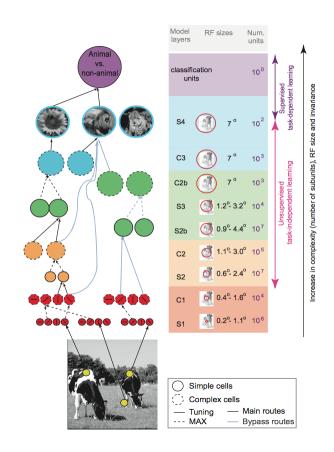
Serre et al's hierarchical model of vision:

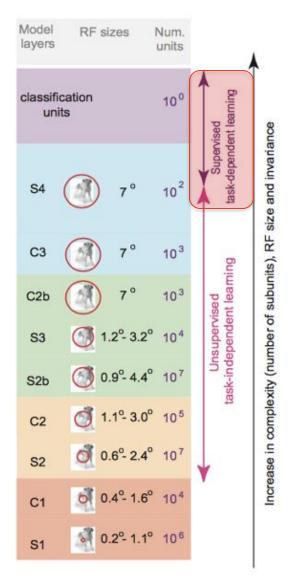




There is a data problem for human (and machine) learning

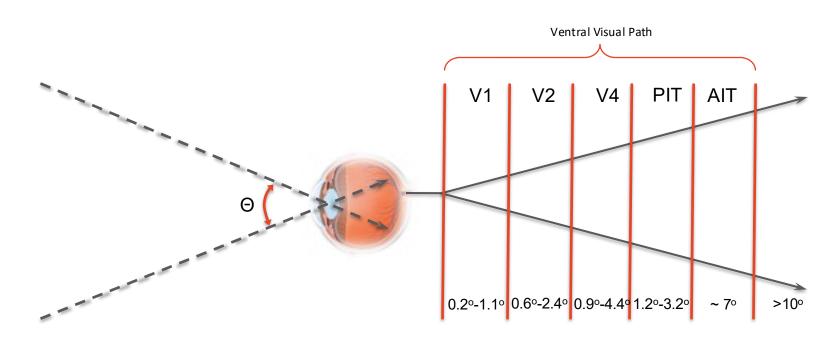
Serre et al's hierarchical model of vision:





There is a data problem for human (and machine) learning

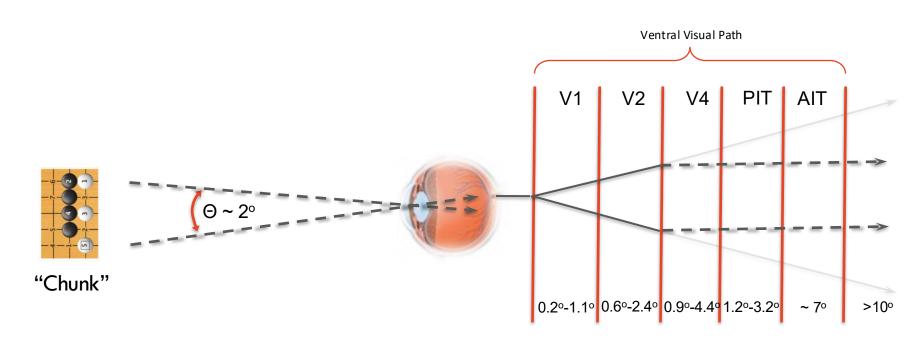
Serre et al's hierarchical model of vision:



~ Receptive Field size of neurons in each region

There is a data problem for human (and machine) learning

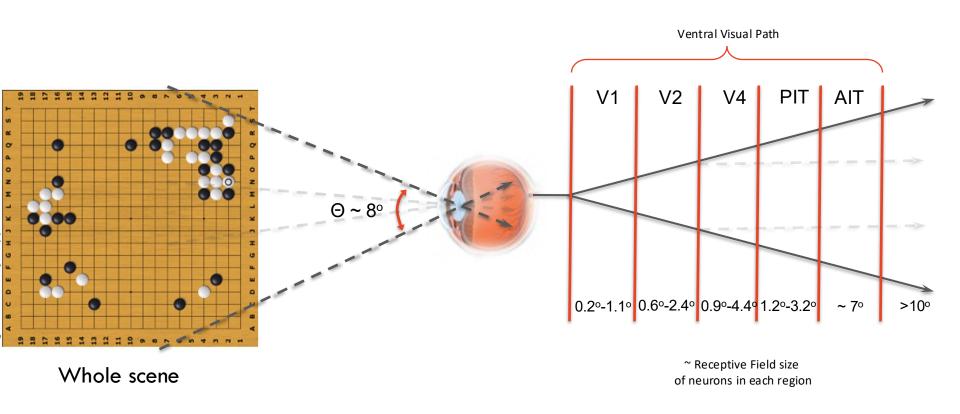
Serre et al's hierarchical model of vision:



~ Receptive Field size of neurons in each region

There is a data problem for human (and machine) learning

Serre et al's hierarchical model of vision:



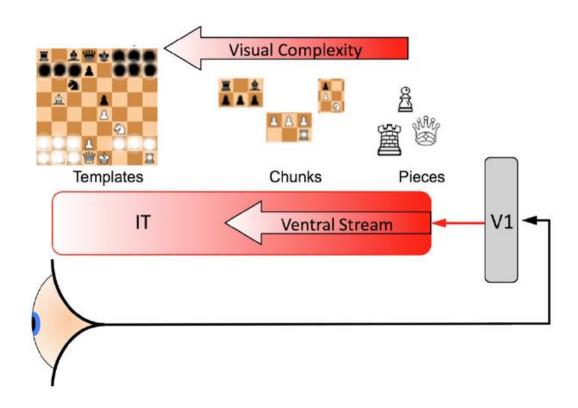


FIGURE 2 | A representation of the category formation mechanism.

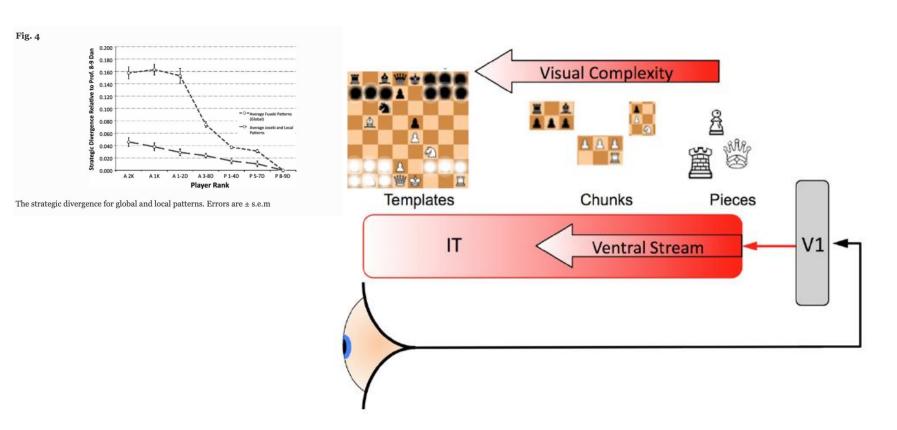
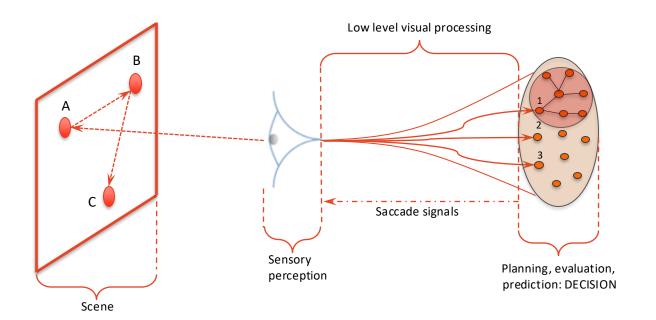


FIGURE 2 | A representation of the category formation mechanism.

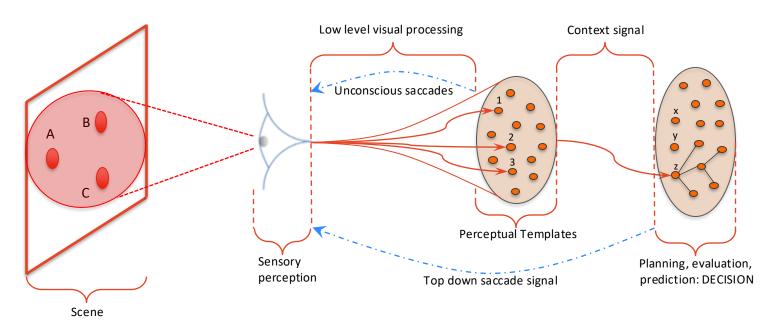
There is a data problem for human (and machine) learning

How this looks in practice: novices forage for information in the environment



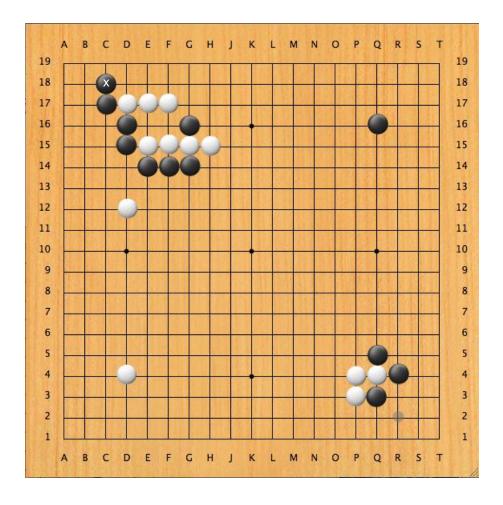
There is a data problem for human (and machine) learning

How this looks in practice: experts contextualise their foraging using visual cues ("templates")

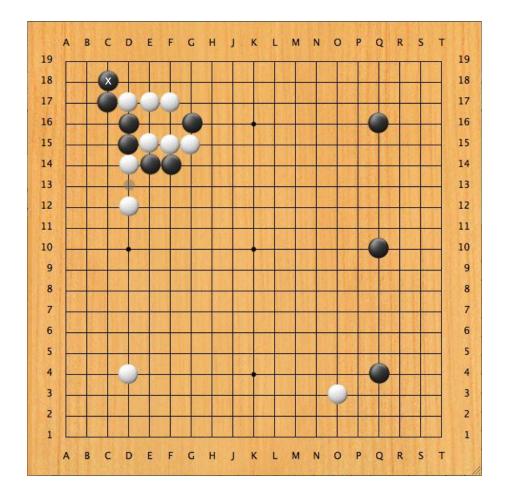


Originally developed in M. Harré T. Bossoamier & A. Snyder, "The perceptual cues that reshape expert reasoning", Scientific Reports (2012)

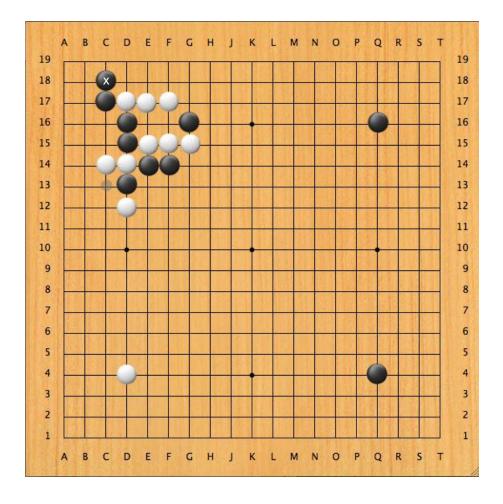
A 1.



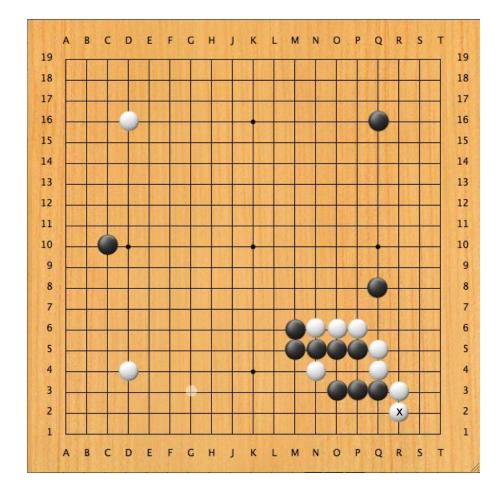
A 2.



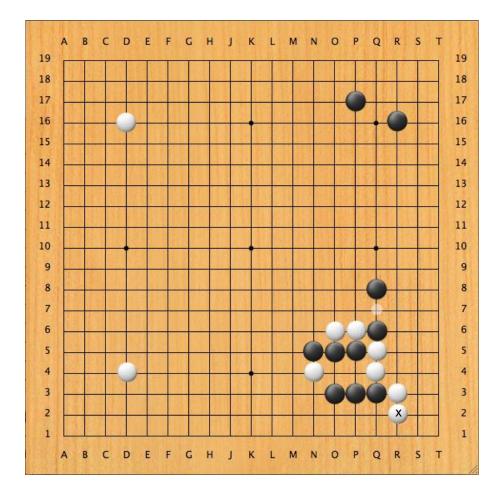
A 3.



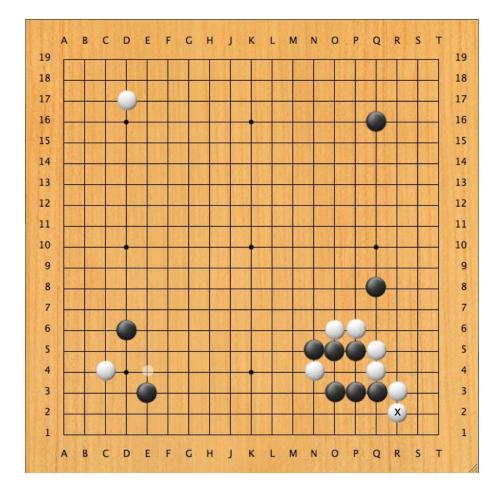
B 1.

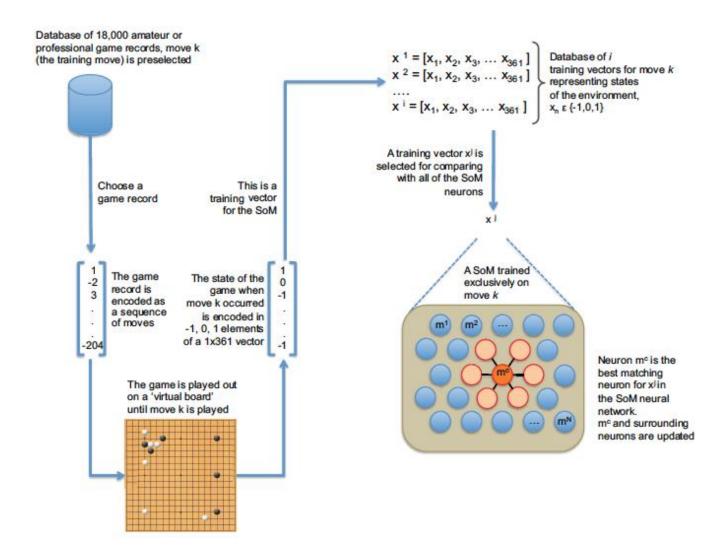


B 2.



В 3.

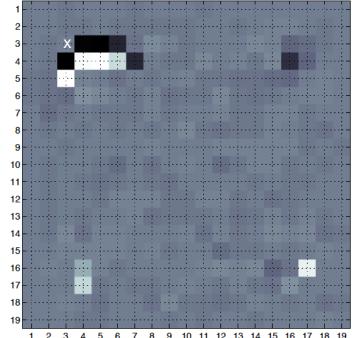




Learning the co-occurring elements results in *Perceptual Templates.*

This is just one such template encoded in a single SoM neuron:





The brain as a **stochastic** evidence accumulator for two alternatives

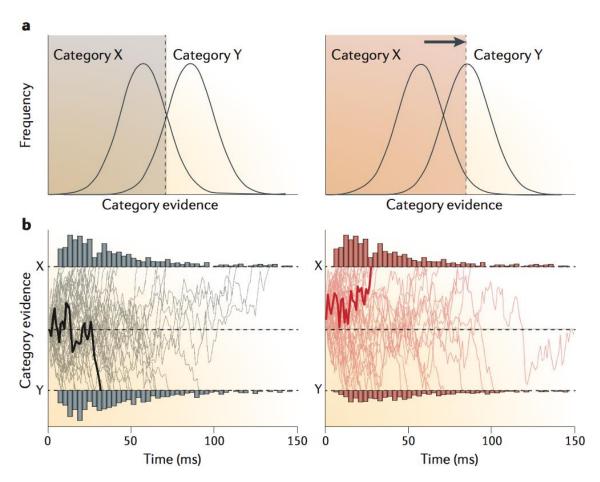


Figure 2 | Decision-theoretic approaches to understanding expectation.

 $\left\{b_i^c\right\}$ = a set of individual stones on the board in positions i and each of colour $c \in \{\text{black,white}\}$

 $fix(a_x)$ = hold stone at position i fixed, this is the action for which we want the contex

Using a custering algorithm, Self-organising map (SoM) in this case, compute the neurons belonging to each cluster for a given a_x , producing a SoM with k neurons in each of y clusters:

Clust^y
$$\left[\left\{ b_i^c \right\} \middle| \text{fix}(a_x) \right] = \left\{ b_i^c \right\}_{j=1...k}^y$$

The number of SoM neurons in each cluster is the "strength" of the cluster, i.e. how likely it is to occur.

$$\mathsf{Clust}^y \bigg[\left\{ b_i^c \right\} \bigg| \ \mathsf{fix}(a_x) \bigg] = \left\{ b_i^c \right\}_{j=1 \dots k}^y$$

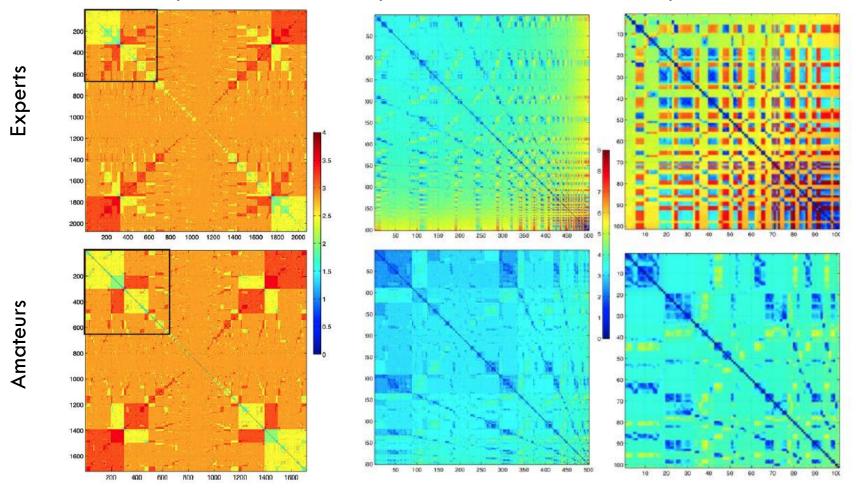
$$\frac{\int_{j} \left\{b_{i}^{c}\right\}_{j=1...k}^{y} dj}{\int_{y} \int_{j} \left\{b_{i}^{c}\right\}_{j=1...k}^{y} dj dy} = p\left(\left\{b_{i}^{c}\right\}^{y} \middle| a_{x}\right)$$

=
$$p\left(\operatorname{context}^y \mid a_x\right)$$

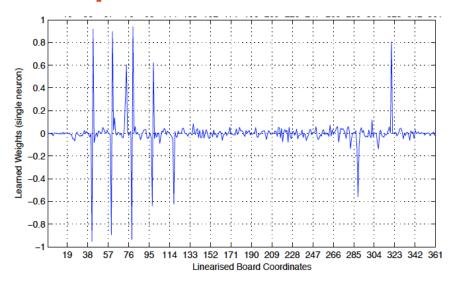
where integrals count the neurons. This is the probability of a context (whole of scene perception) $\left\{b_i^c\right\}^y$ being present when move a_x is made on the board.

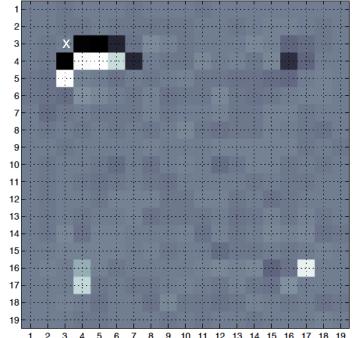
 $\int_x p\Big(\text{context}^y\,\Big|\,a_x\Big) = p\Big(\text{context}^y,\,a_x\Big) \text{ i.e. the joint probability of a move and a context.}$

Similarity matrices of Go templates for Go: Amateurs vs. Experts



Learning the co-occurring elements results in Perceptual Templates:





Free Energy, Free Utility:

$$H(p) = -\sum_{x} p(x)\log(p(x))$$
 $V(p) = \text{internal energy (potential function)}$
 $F(p) = V(p) - TH(p) \text{ (where T is temperature)}$

Helmholtz Free Energy (1)

Free Energy, Free Utility:

$$H(p) = -\sum_{x} p(x)\log(p(x))$$
 $V(p) = \text{internal energy (potential function)}$
 $F(p) = V(p) - TH(p) \text{ (where T is temperature)}$

Helmholtz Free Energy (1)

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - TH(P) \quad (T \text{ is uncertainty or error})$$
Free Utility (2 players) (2)

Strategic Choice of Preferences: the Persona Model

https://doi.org/10.2202/1935-1704.1593

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - T H(P) \quad (T \text{ is uncertainty or error})$$
Free Utility (2 players) (2)

Optimising these "free functionals" leads to standard exponential solutions:

$$P(x) \propto \exp(-\beta V(P))$$

$$P(x \mid x = x_i) \propto \exp(\beta U_a(P(y) \mid x = x_i))$$

$$P(y \mid y = y_i) \propto \exp(\beta U_b(P(x) \mid y = y_i))$$

https://doi.org/10.2202/1935-1704.1593

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127–138 (2010) | Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s,o) = P(o|s)P(s)$$

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127–138 (2010) Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s, o) = P(o|s)P(s)$$

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

$$Q^*(s) = \underset{Q(s)}{\operatorname{argmin}} \mathcal{F}(Q)$$
 (3)

$$Q^*(s) \simeq P(s|o) \tag{4}$$

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127–138 (2010) Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s, o) = P(o|s)P(s)$$

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

$$Q^*(s) = \underset{Q(s)}{\operatorname{argmin}} \mathcal{F}(Q)$$
 (3)

$$Q^*(s) \simeq P(s|o) \tag{4}$$

$$\mathcal{F}(Q) = E_Q[\log(Q(s)) - \log(P(s|o))]$$
 (5)

$$= \underbrace{E_{Q}(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$
(6)

Information, Utility and Bounded Rationality

Pedro Alejandro Ortega and Daniel Alexander Braun

Department of Engineering, University of Cambridge Trumpington Street, Cambridge, CB2 1PZ, UK {dab54,pao32}@cam.ac.uk

Path Integral Control and Bounded Rationality

Daniel A. Braun Univ. Southern California Los Angeles, USA dab54@cam.ac.uk Pedro A. Ortega Univ. Cambridge Cambridge, UK peortega@dcc.uchile.cl

Evangelos Theodorou Univ. Southern California Los Angeles, USA etheodor@usc.edu Stefan Schaal Univ. Southern California Los Angeles, USA sschaal@usc.edu

1. Control. Given an initial policy represented by the probability measure \mathbf{P}_i and the constraint utilities \mathbf{U}_* , we are looking for the final system \mathbf{P}_f that optimizes the trade-off between utility and resource costs. That is,

$$\mathbf{P}_{f} = \arg \max_{\mathbf{Pr}} \sum_{x \in \mathcal{X}} \mathbf{Pr}(x) \mathbf{U}_{*}(x) - \alpha \sum_{x \in \mathcal{X}} \mathbf{Pr}(x) \log \frac{\mathbf{Pr}(x)}{\mathbf{P}_{i}(x)}.$$
 (2)

$$\arg \max_{\mathbf{P}_f(x)} \left(\sum_{x \in \mathcal{X}} \mathbf{P}_f(x) \mathbf{U}_*(x) - \alpha \sum_{x \in \mathcal{X}} \mathbf{P}_f(x) \log \frac{\mathbf{P}_f(x)}{\mathbf{P}_i(x)} \right).$$
(5)

The solution to this variational problem is given by

$$\mathbf{P}_f(x) \propto \mathbf{P}_i(x) \exp\left(\frac{1}{\alpha} \mathbf{U}_*(x)\right).$$

In particular, at very low temperature $\alpha \approx 0$, the maximum expected utility principle is recovered as

$$\mathbf{J}_f - \mathbf{J}_i pprox \sum_{x \in \mathcal{X}} \mathbf{P}_f(x) \mathbf{U}_*(x),$$

and hence resource costs are ignored in the choice of \mathbf{P}_f , leading to $\mathbf{P}_f \approx \delta_{x^*}(x)$, where $x^* = \arg\max_x \mathbf{U}_*(x)$. Similarly, at a high temperature, the difference is

$$\mathbf{J}_f - \mathbf{J}_i \approx -\alpha \sum_{x \in \mathcal{X}} \mathbf{P}_f(x) \log \frac{\mathbf{P}_f(x)}{\mathbf{P}_i(x)},$$

What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Pedro A. Ortega¹ and Daniel A. Braun^{2,3}

$$\max_{P(a)} \sum_{P(s|a)} \sum_{a} P(a) \left(-\frac{1}{\beta} D_{KL}[P(s|a)||P_{des}(s|a)] - \frac{1}{\alpha} \log \frac{P(a)}{P_0(a)} - \frac{1}{\beta} \log Z_{\beta}(a) \right)$$
with the solution
$$P^*(s|a) = P_0(s|a) \exp\{\beta U(s,a)\} / Z_{\beta}(a)$$
and
$$P^*(a) = P_0(a) \exp\{\frac{\alpha}{\beta} \log Z_{\beta}(a)\} / Z_{\alpha}$$

Assuming:
$$P_{des}(s|a) = P_{des}(s)$$
 and $\alpha \to \infty$

$$-D_{KL}[P(s|a)||P_{des}(s)] = \underbrace{\mathbb{E}_{P(s|a)}[\log P_{des}(s)]}_{extrinsic-value} + \underbrace{H[P(s|a)]}_{intrinsic-value}$$

What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Pedro A. Ortega¹ and Daniel A. Braun^{2,3}

$$\max_{P(a)} \max_{P(s|a)} \sum_{a} P(a) \left(-\frac{1}{\beta} D_{KL}[P(s|a)||P_{des}(s|a)] - \frac{1}{\alpha} \log \frac{P(a)}{P_0(a)} - \frac{1}{\beta} \log Z_{\beta}(a) \right)$$

with the solution $P^*(s|a) = P_0(s|a) \exp{\{\beta U(s,a)\}}/{Z_{\beta}(a)}$

and
$$P^*(a) = P_0(a) \exp\{\frac{\alpha}{\beta} \log Z_{\beta}(a)\}/Z_{\alpha}$$

Note: $P_{des}(s|a) = P_0(s|a) \exp\{\beta U(s,a)\}/Z_{\beta}(a)$ by definition (i.e. a prior)

$$-D_{KL}[P(s|a)||P_{des}(s)] = \underbrace{\mathbb{E}_{P(s|a)}[\log P_{des}(s)]}_{extrinsic-value} + \underbrace{H[P(s|a)]}_{intrinsic-value}$$

What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Pedro A. Ortega¹ and Daniel A. Braun^{2,3}

$$\mathcal{F}(Q) = \underbrace{E_Q(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$
= expected log loss

$$\mathbf{Q}_{\tau}(\pi) = -\underbrace{D[Q(s_{\tau}|\pi)||P(s_{\tau}|\pi)]}_{\text{KL divergence}} = \underbrace{E_{Q(s_{\tau}|\pi)}[\ln P(s_{\tau}|m)]}_{\text{Extrinsic value}} + \underbrace{H[Q(s_{\tau}|\pi)]}_{\text{Epistemic value}}$$

$$-D_{KL}[P(s|a)||P_{des}(s)] = \underbrace{\mathbb{E}_{P(s|a)}[\log P_{des}(s)]}_{extrinsic-value} + \underbrace{H[P(s|a)]}_{intrinsic-value}$$

What is epistemic value in free energy models of learning and acting? A bounded rationality perspective

Pedro A. Ortega¹ and Daniel A. Braun^{2,3}

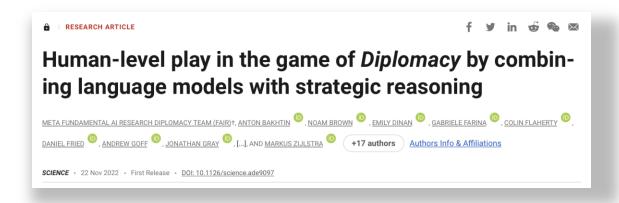
$$\mathcal{F}(Q) = \underbrace{E_Q(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$
Friston: no utility

$$\mathbf{Q}_{\tau}(\pi) = -\underbrace{D[Q(s_{\tau}|\pi)||P(s_{\tau}|\pi)]}_{\text{KL divergence}} = \underbrace{E_{Q(s_{\tau}|\pi)}[\ln P(s_{\tau}|m)]}_{\text{Extrinsic value}} + \underbrace{H[Q(s_{\tau}|\pi)]}_{\text{Epistemic value}}$$

$$-D_{KL}[P(s|a)||P_{des}(s)] = \underbrace{\mathbb{E}_{P(s|a)}[\log P_{des}(s)]}_{extrinsic-value} + \underbrace{H[P(s|a)]}_{intrinsic-value}$$

Ortega and Braun: with utility



piKL: KL-regularized planning

piKL assumes player i seeks a policy π_i that maximizes the modified utility function

$$U_i(\pi_i, \pi_{-i}) = u_i(\pi_i, \pi_{-i}) - \lambda D_{KL}(\pi_i \parallel \tau_i)$$
(1)

where π_{-i} represents the policies of all players other than i, and $u_i(\pi_i, \pi_{-i})$ is the expected value of π_i given that other players play π_{-i} . Specifically, let $Q_i^{t-1}(a_i) = u_i(a_i, \pi_{-i}^{t-i})$ and let

$$\pi_i^{\Delta t}(a_i) \propto \tau_i(a_i) \exp\left[\frac{Q_i^{t-1}(a_i)}{\lambda}\right]$$
 (2)

On each iteration t, piKL updates its prediction of the players' joint policies to be

$$\pi^{t} = \left(\frac{t-1}{t}\right)\pi^{t-1} + \left(\frac{1}{t}\right)\pi^{\Delta t} \tag{3}$$

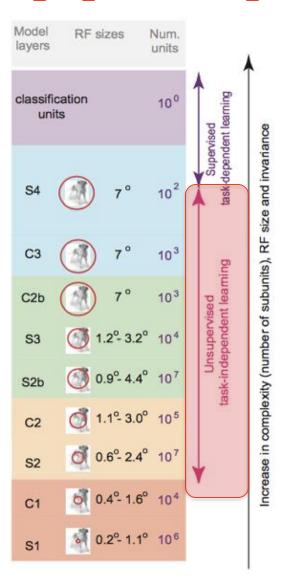
Cisero's equivalent of Free Energy is:

$$U(\pi_i, \pi_{-i}) = u(\pi_i, \pi_{-i}) + \lambda D_{KL}(\pi_i \mid \tau_i)$$
 (12)

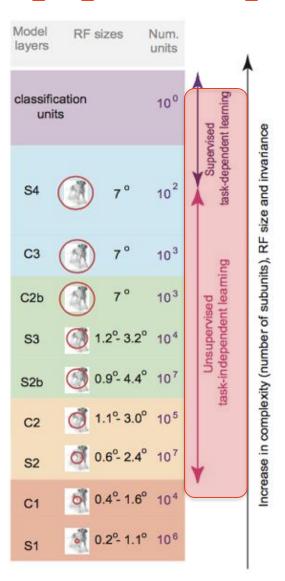
$$= u(\pi_{i}, \pi_{-i}) + \lambda \left(\underbrace{-\underbrace{H(\pi_{i})}_{\text{entropy}} + \underbrace{H(\pi_{i}, \tau_{i})}_{\text{cross entropy}} \right)}_{\text{Log-loss game}}$$
(13)

$$= \underbrace{u(\pi_{i}, \pi_{-i}) + \lambda(\underline{-H(\pi_{i})} + \underline{H(\pi_{i}, \tau_{i})})}_{\text{Entropy}} + \underbrace{H(\pi_{i}, \tau_{i})}_{\text{cross entropy}}$$
(14)

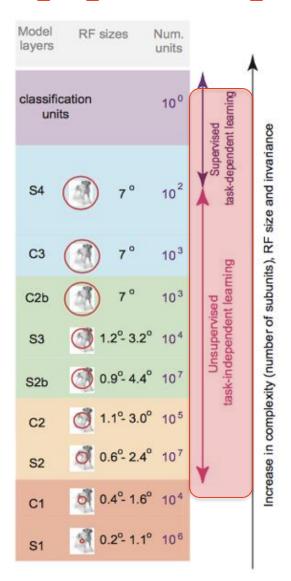
Bringing These Together in a Dual Process Model

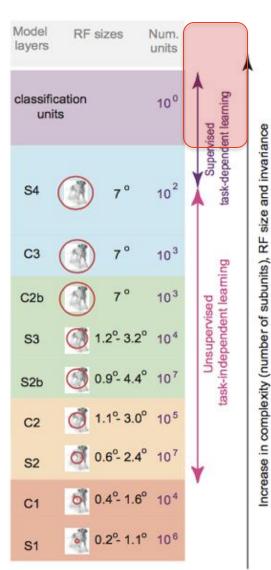


Bringing These Together in a Dual Process Model



Bringing These Together in a Dual Process Model





Final word from Herb Simon

In an information-rich world, the wealth of information means a dearth of something else: a scarcity of whatever it is that information consumes. What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.

Designing Organizations for an Information-Rich World (1971)

Thank you

Questions

