
The University of Sydney Page 1

A Free Energy Principle 

Approach to Expert 

Perception in Complex 

Tasks

Emerging Aspirations Workshop, Sept. 2023

Dr. Michael Harré

Stable Diffusion



The University of Sydney Page 2

Perspective: What is the goal here?

Stable Diffusion
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Dual processes are used in complex tasks:

• No ‘normative’ solution

• Optimisation is difficult/impossible

• Noisy and/or ambiguous information

• Non-trivial but sparse structures in the environment

• Little direct access to our cognitive strategies

• A huge amount of data is still insufficient data for exact solutions

Perspective: What is the goal here?
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Information Theory and Decision-Making
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Information Theory and Decision-Making
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Information Theory and Decision-Making

Experimentally derived 

“Chunks” in Go
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The general trends observed on the way to being “world class”
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Unexpected linearities & non-linearities

total capacity
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Information Theory and Decision-Making
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The Psychology of Perception in Games

Other factors that seemed relevant:

- Large span memory: So many details remembered so well
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The Psychology of Perception in Games

Visual foraging: amateurs yes, experts less so

- Experts: didn’t saccade ~16% of the time

- Intermediates: didn’t saccade ~3% of the time

- Novices: didn’t saccade ~2% of the time
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The Psychology of Perception in Games

Eye saccades change with expertise and goals:

Experts perceive the environment differently: Expert versus novice eye saccades1

1 M. Bilalic et al. “Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts” (2010)
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The Psychology of Perception in Games

1 M. Bilalic et al. “Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts” (2010)

Eye saccades change with expertise and goals:

Experts perceive the environment differently: Expert versus novice eye saccades1

“Experts’ extensive knowledge facilitates immediate pattern recognition by directing experts 

toward the relevant objects and allowing them to ignore irrelevant ones.”
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Visual Foraging and Whole of Scene Perception
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Visual Foraging and Whole of Scene Perception

Eye saccades change with expertise and goals:

The Active Inference solution to this problem
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Visual Foraging and Whole of Scene Perception

Eye saccades change with expertise and goals:

The Active Inference solution to this problem
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Visual Foraging and Whole of Scene Perception

Making a “decision”: how many cars are in this picture?
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Making a “decision”: how many cars are in this picture?
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Visual Foraging and Whole of Scene Perception
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Visual Foraging and Whole of Scene Perception

Visual foraging is enough in unstructured environs

1. Local pattern matching is as good as possible in unstructured environs;

2. Consequently, foraging is necessary in such situations.

But for “complex” decisions:

1. Experts’ saccades systematically vary in task relevant contexts;

2. This largely vanishes if the structure is removed;

3. Sometimes experts (natural or trained) don’t saccade;

4. “Whole of scene” perception can be enough.
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

The problem: pattern matching doesn’t scale up to a whole board 

Local: very common Global: very(!) uncommon
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Visual Foraging and Whole of Scene Perception

There is a data problem for human 

(and machine) learning
Serre et al’s hierarchical model of vision:

“A feedforward architecture accounts for rapid categorization”, T. Serre, A. Oliva & T. Poggio PNAS (2007)

“The Receptive Fields of the Inferior Temporal Cortex Neurons in Natural Scenes”, E. Rolls, N. Aggelopoulos & F. Zheng, Journal of Neuroscience (2003)

“Visual cortical mechanisms of perceptual grouping: interacting layers, networks, columns, and maps”, W.D. Ross, S. Grossberg, E. Mingolla 
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

Serre et al’s hierarchical model of vision:

V1 V2 V4 PIT AIT

Ventral Visual Path

0.2o-1.1o 0.6o-2.4o 0.9o-4.4o 1.2o-3.2o ~ 7o >10o

Θ 

~ Receptive Field size
 of neurons in each region
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

Serre et al’s hierarchical model of vision:

V1 V2 V4 PIT AIT

Ventral Visual Path

0.2o-1.1o 0.6o-2.4o 0.9o-4.4o 1.2o-3.2o ~ 7o >10o

Θ ~ 2o

~ Receptive Field size
 of neurons in each region

“Chunk”
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

Serre et al’s hierarchical model of vision:

V1 V2 V4 PIT AIT

Ventral Visual Path

0.2o-1.1o 0.6o-2.4o 0.9o-4.4o 1.2o-3.2o ~ 7o >10o

~ Receptive Field size
 of neurons in each region

Θ ~ 8o

Whole scene
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Visual Foraging and Whole of Scene Perception

“The neural circuitry of expertise: perceptual learning and social cognition”, M. Harré, Frontiers 

in Human Neuroscience (2013)
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Visual Foraging and Whole of Scene Perception

“The neural circuitry of expertise: perceptual learning and social cognition”, M. Harré, Frontiers 

in Human Neuroscience (2013)
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

How this looks in practice: novices forage for information in the environment 

Low level visual processing

Sensory 
perception

1

2

3

Saccade signals

A

B

C

Scene

Planning, evaluation, 
prediction: DECISION
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

How this looks in practice: experts contextualise their foraging using visual cues (“templates”) 

1

2

3

Low level visual processing

Sensory 
perception

Context signal

x

y

z

Planning, evaluation, 
prediction: DECISION

A
B

C

Perceptual Templates

Scene

Top down saccade signal

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

Unconscious saccades
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x

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

Extracting Context From Complex Data

A 1.



The University of Sydney Page 44

x

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

Extracting Context From Complex Data

A 2.
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x

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

Extracting Context From Complex Data

A 3.
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Extracting Context From Complex Data

x

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

B 1.



The University of Sydney Page 47

Extracting Context From Complex Data

x

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

B 2.
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Extracting Context From Complex Data

x

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

B 3.
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Extracting Context From Complex Data

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)
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Learning the co-occurring 

elements results in 

Perceptual Templates.

This is just one such template

encoded in a single SoM neuron:
x

M. Harré & A. Snyder, “Intuitive Expertise and Perceptual Templates” (2011)

Extracting Context From Complex Data
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Extracting Context From Complex Data

The brain as a stochastic evidence accumulator for two alternatives

“Expectation in Neural Decision Making: Neural and Computational Mechanisms”, 

C. Summerfield and F. de Lange, Nature Reviews | Neuroscience (2014)
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Extracting Context From Complex Data
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Extracting Context From Complex Data
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Extracting Context From Complex Data

M. Harré, “From Amateur to Professional: A Neuro-cognitive Model of Categories and Expert Development”, Minds and Machines (2013)

Similarity matrices of Go templates for Go: Amateurs vs. Experts
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Learning the co-occurring 

elements results in 

Perceptual Templates:

x

M. Harré & A. Snyder, “Intuitive Expertise and Perceptual Templates” (2011)

Extracting Context From Complex Data
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Utility value and the Free Energy Principle
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Utility value and the Free Energy Principle
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Utility value and the Free Energy Principle

Friston’s Free Energy Principle:
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Utility value and the Free Energy Principle

Friston’s Free Energy Principle:
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Utility value and the Free Energy Principle

Friston’s Free Energy Principle:
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Utility value and the Free Energy Principle
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Utility value and the Free Energy Principle

andAssuming:
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Utility value and the Free Energy Principle

by definition (i.e. a prior)Note:
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Utility value and the Free Energy Principle
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Utility value and the Free Energy Principle

Friston: no utility

Ortega and Braun: with utility
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Utility value and the Free Energy Principle
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Utility value and the Free Energy Principle
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Bringing These Together in a Dual Process Model
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Bringing These Together in a Dual Process Model
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Final word from Herb Simon

In an information-rich world, the wealth of information means a dearth of something else: 

a scarcity of whatever it is that information consumes. What information consumes is 

rather obvious: it consumes the attention of its recipients. Hence a wealth of information 

creates a poverty of attention and a need to allocate that attention efficiently among the 

overabundance of information sources that might consume it.

Thank you

Designing Organizations for an Information-Rich World (1971)
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Questions
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