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Perspective: What is the goal here?

Dual processes are used in complex tasks:

® No ‘normative’ solution

® Optimisation is difficult/impossible

® Noisy and/or ambiguous information

® Non-trivial but sparse structures in the environment
® Little direct access to our cognitive strategies

® A huge amount of data is still insufficient data for exact solutions

The University of Sydney Page 9
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The board state and probability distributions over the next moves. Top One of the joseki showing the
first six stones played in the local area by 8-9Dan professionals. Bottom Four example histograms of the
frequency each of the ten moves might follow. Note the order of the moves on the horizontal axis in this
plot is with respect to the 8-9Dan professionals, i.e. the most preferred move, labelled ‘1’, is most

preferred by the 8-9Dan professionals, the move labelled ‘2’ is the second most preferred by these
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Published: 24 March 2011

The aggregate complexity of decisions in the
game of Go

M. S. Harré &, T. Bossomaier, A. Gillett & A. Snyder

The European Physical Journal B 80, 555-563 (2011) | Cite this article
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Fig. 1. (Color online) Left: the first 20 moves in a game of
Go. Right: Stones played in a 7 X 7 region in the lower right
corner, the numbers record the order in which they were played
(moves 2 to 5 were played elsewhere on the board).
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Fig.1

The two smallest patterns used. The starting pattern (the two black un-numbered stones) on the left
is called ‘skip one’ and the starting pattern on the right is called ‘knight’s move’ in Reitman’s study

Fig. 2

The two mid-sized patterns used. The pattern on the left is a variation of the ‘avalanche’ joseki and
the pattern on the right is a variation of the ‘4—4 point low approach high extension’ joseki. Note
that the board is bounded by the corner in these patterns so that they only ever occur in the corner
of the board, unlike the smaller patterns in Fig. 1 that may occur anywhere on the board, including
the corners
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Fig. 1 st et et s

The two smallest patterns used. The starting pattern (the two black un-numbered stones) on the left
is called ‘skip one’ and the starting pattern on the right is called ‘knight’s move’ in Reitman’s study
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Information Theory and Decision-Making

Experimentally derived o rveereer s 36356 097
“Chunks” in Go

Skilled Perception in Go: Deducing Memory Structures
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Information Theory and Decision-Making

The general trends observed on the way to being “world class”

The University of Sydney
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The Psychology of Perception in Games

Other factors that seemed relevant:

- Large span memory: So many details remembered so well

Research Article

VISUAL SPAN IN EXPERT CHESS PLAYERS:
Evidence From Eye Movements

Eyal M. Reingold,' Neil Charness,> Marc Pomplun,' and Dave M. Stampe'

'University of Toronto, Toronto, Ontario, Canada, and *Florida State University

Chess Configuration - Original Chess Configuration - Modified
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Fig. 1. Nlustration of the flicker paradigm. The top row displays an original and a modified (the changed piece is in square f4) chess
configuration taken from an actual game. The bottom row displays an original and a modified (the changed piece is in square b2) random
configuration obtained by scrambling an actual game configuration. In all four displays, a gaze-contingent window is present, with chess pieces
outside the window being replaced by blobs masking their identity and color. (The difference in luminance between the regions inside and
outside the window was not present in actual experimental displays and was added here for illustrative purposes.)
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The Psychology of Perception in Games

Visual foraging: amateurs yes, experts less so

- Experts: didn’t saccade ~16% of the time
- Intermediates: didn’t saccade ~3% of the time
- Novices: didn’t saccade ~2% of the time
Novice Intermediate Expert
All Layouts All Layouts All Layouts
Initial Gaze Position Included Initial Gaze Position Included Initial Gaze Position Included
K. e RS | = R T K =S R T

I
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- Experts: didn’t saccade ~16% of the time
- Intermediates: didn’t saccade ~3% of the time
- Novices: didn’t saccade ~2% of the time
Novice Intermediate Expert
Selected Layout Selected Layout Selected Layout
Initial Gaze Position Excluded Initial Gaze Position Excluded Initial Gaze Position Excluded
K 53 L ] = . . -

‘ K-

The University of Sydney Page 21



The Psychology of Perception in Games

Eye saccades change with expertise and goals:

Experts perceive the environment differently: Expert versus novice eye saccades’

a Chess Task

Expert Novice

Normal

Random

Single participant

The University of Sydney

Control Task
Expert Novice

Normal

Random

Single participant

M. Bilalic et al. “Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts” (2010)
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The Psychology of Perception in Games
Eye saccades change with expertise and goals:

Experts perceive the environment differently: Expert versus novice eye saccades’

“Experts’ extensive knowledge facilitates immediate pattern recognition by directing experts
toward the relevant objects and allowing them to ignore irrelevant ones.”
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Visual Foraging and Whole of Scene Perception

Object Perception as Bayesian Inference

Annual Review of Psychology

Vol. 55:271-304 (Volume publication date 4 February 2004)
First posted online on October 6, 2003
https://doi.org/10.1146/annurev.psych.55.090902.142005

Daniel Kersten
Pascal Mamassian
Alan Yuille

Annual Review of Neuroscience

Integration of Feedforward and
Feedback Information Streams
in the Modular Architecture of
Mouse Visual Cortex

Andreas Burkhalter,! Rinaldo D. D’Souza,! Weiqing Ji,!
and Andrew M. Meier? Annu. Rev. Neurosci. 2023. 46:259-80

The University of Sydney

Perceptual Learning: Toward
a Comprehensive Theory

Takeo Watanabe and Yuka Sasaki

Department of Cognitive, Linguistic, and Psychological Sciences, Brown University,
Providence, Rhode Island 02912; email: Takeo_Watanabe@Brown.edu

Annu. Rev. Psychol. 2015. 66:197-221
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Visual Foraging and Whole of Scene Perception

Eye saccades change with expertise and goals:

The Active Inference solution to this problem

ORY

“‘ frontiers )
in Computational Neuroscience

Scene Construction, Visual Foraging,
and Active Inference

M. Berk Mirza*, Rick A. Adams??, Christoph D. Mathys"*° and Karl J. Friston

The University of Sydney Page 25



Visual Foraging and Whole of Scene Perception

Eye saccades change with expertise and goals:

The Active Inference solution to this problem

i? frontiers

in Computational Neuroscience

Scene Construction, Visual Foraging,
and Active Inference

M. Berk Mirza*, Rick A. Adams??, Christoph D. Mathys"*° and Karl J. Friston

Simulated visual searches

The University of Sydney
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FIGURE 7 | Sequences of saccades: this figure illustrates the behavior for
the first nine trials shown in the previous figure using the same format as
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Visual Foraging and Whole of Scene Perception

Making a “decision”: how many cars are in this picture?

The University of Sydney Page 27
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Visual Foraging and Whole of Scene Perception

The University of Sydney

Visual Functions of Primate Area V4

w in Advance on June 24, 2020
/annurev-vision-030320-041306

Figure 7 Goal-oriented representations. (a) When confronted with the challenge of spotting bananas ina
cluttered produce aisle, the subject may saccade to different locations with yellow objects (dashed
trajectory) and compare the shape of the object at the attentional focus (circles) with a remembered
object. Area V4 is thought to be important for all aspects of this process. (b) Size illusion. The retinal sizes
of the two sasquatches in this image are identical, but the perceived sizes are dramatically different. This
is because the surrounding context suggests that the sasquatch at right is farther away from the observer;
thus, the same retinal size would imply a much larger sasquatch farther away.
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Visual Foraging and Whole of Scene Perception

Visual foraging is enough in unstructured environs

1. Local pattern matching is as good as possible in unstructured environs;
2. Consequently, foraging is necessary in such situations.

But for “complex” decisions:

1. Experts’ saccades systematically vary in task relevant contexts;

2. This largely vanishes if the structure is removed;

3. Sometimes experts (natural or trained) don’t saccade;

4. “Whole of scene” perception can be enough.

The University of Sydney Page 31



Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

The problem: pattern matching doesn’t scale up to a whole board

Local: very common Global: very(l) uncommon

The University of Sydney Page 32



Visual Foraging and Whole of Scene Perception
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

Serre et al’s hierarchical model of vision:

Ventral Visual Path

A
4 N
V2 V4 PIT | AIT |
/
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/
\\
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~——
_- - 0.20-1.10]0.6°-2.4°10.9°-4.491.20-3.20] ~ 7° >100

~ Receptive Field size
of neurons in each region
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

Serre et al’s hierarchical model of vision:

Ventral Visual Path

N

V1 V2 V4 | PIT | AIT

— i e ] o — —

N A — —————— LW 3

“Chunk”
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~ Receptive Field size
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

Serre et al’s hierarchical model of vision:

Ventral Visual Path

A

V1 V2 V4 | PIT | AIT |

4<ii

'\

0.20-1.1°/0.6°-2.4° 0.90-4.4‘1 1.20-3.20f ~70 >100°

~ Receptive Field size

WhOIG scene of neurons in each region
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Visual Foraging and Whole of Scene Perception

L Templates Chunks Pieces
[ IT V1|

FIGURE 2 | A representation of the category formation mechanism.

“The neural circuitry of expertise: perceptual learning and social cognition”, M. Harré, Frontiers
The University of Sydney in Human Neuroscience (2013) Page 39



Visual Foraging and Whole of Scene Perception
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FIGURE 2 | A representation of the category formation mechanism.
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Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

How this looks in practice: novices forage for information in the environment

Low level visual processing

AL

{
{

Saccade signals |
|

! Sensory
\_ W, perception

Planning, evaluation,
prediction: DECISION

The University of Sydney Page 41



Visual Foraging and Whole of Scene Perception

There is a data problem for human (and machine) learning

How this looks in practice: experts contextualise their foraging using visual cues (“templates”)

Low level visual processing Context signal

\//"‘ <. Perceptual Templates .- R/_J

Sensory T~ e Planning, evaluation,

~.
~. .-

\ W, perception Top down saccade signal prediction: DECISION

Y

Scene

Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

The University of Sydney
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Extracting Context From Complex Data

Al

The University of Sydney Page 43
Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)



Extracting Context From Complex Data

A 2

The University of Sydney Page 44
Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)



Extracting Context From Complex Data

A 3.

The University of Sydney Page 45
Originally developed in M. Harré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)



Extracting Context From Complex Data

B 1.

The University of Sydney Originally developed in M. Haré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

Page 46



Extracting Context From Complex Data

B 2.

The University of Sydney Originally developed in M. Haré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)

Page 47



Extracting Context From Complex Data

B 3.

The University of Sydney Originally developed in M. Haré T. Bossoamier & A. Snyder, “The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)
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Extracting Context From Complex Data

Database of 18,000 amateur or

professional game records, move k
(the training move) is preselected

Choose a

The University of Sydney Originally developed in M. Harré T. Bossoamier & A. Snyder, *

until move k is played

Thisisa
training vector
for the SoM

x1=[x’ Wagazas ] | Databaseofi

x2=[x: :: ::: z:] training vectors for move k
e e RS Mm

of the environment,

xl= [X4s X2, X3, .. Xagq ] %, £{-1,0,1}

Atraining vector x/ is
selected for
with all of the SoM

Neuron meis the

neuron for x/in
the SoM neural

me and surrounding
neurons are updated

The perceptual cues that reshape expert reasoning”, Scientific Reports (2012)
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Leamed Weights (single neuron)

Learning the co-occurring
elements results in
Perceptual Templates.

This is just one such template
encoded in a single SoM neuron:

The University of Sydney
M. Harré & A. Snyder, “Intuitive Expertise and Perceptual Templates” (2011)

I
19

L e L I O e -

38 57 76 95 114 133 152 171 190 209 228 247 266 285 304 323 342 361

1 2 3

Linearised Board Coordinates

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
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Extracting Context From Complex Data

The brain as a stochastic evidence accumulator for two alternatives

The University of Sydney

a
Category X E Category Y Category X . Category Y

5 |

Q !

o !

Q

=]

o

e

[N

Category evidence

b

Category evidence

T 1 | 1
0 50 100 150 O 50 100 150
Time (ms) Time (ms)

Figure 2 | Decision-theoretic approaches to understanding expectation.

“Expectation in Neural Decision Making: Neural and Computational Mechanisms”,
C. Summerfield and F. de Lange, Nature Reviews | Neuroscience (2014)
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Extracting Context From Complex Data

{bf} = a set of individual stones on the board in positions i and each of colour ¢ € {black,white}

fix(a, ) = hold stone at position i fixed, this is the action for which we want the contex

Using a custering algorithm, Self-organising map (SoM) in this case, compute the neurons
belonging to each cluster for a given a,, producing a SoM with k neurons in each of y clusters:

Clust? [ (b}

The number of SoM neurons in each cluster is the "strength" of the cluster, i.e. how likely it is to
occur.

ﬁx(ax)] = {bc}

j=1..k

The University of Sydney Page 52



Extracting Context From Complex Data

Clust? [ {b}

fix(a)| = {b}

j=1..k

= p[contexty

ax]

where integrals count the neurons. This is the probability of a context (whole of scene perception)

U :
{bf} being present when move a, is made on the board.

f p [contexty
X

ax] =p (contexty , ax) i.e. the joint probability of a move and a context.

The University of Sydney Page 53



Extracting Context From Complex Data

Similarity matrices of Go templates for Go: Amateurs vs. Experts

Experts

Amateurs

nn 400 A0 AN 1000 1200 1400 1600

The University of Sydney

0 10 10 x0 e »0 =0 40 a0 00

M. Harré, “From Amateur to Professional: A Neuro-cognitive Model of Categories and Expert Development”, Minds and Machines (2013)
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Utility value and the Free Energy Principle

Free Energy, Free Utility:

Hp) = - ), p@)log(p(x))

V(p) = internal energy (potential function) - Helmholtz Free Energy (1)

F(@) = V(p) - TH(p) (where T is temperature)

The University of Sydney Page 56



Utility value and the Free Energy Principle

Free Energy, Free Utility:

Hp) = - ), p@)log(p(x))

V(p) = internal energy (potential function) - Helmholtz Free Energy (1)

F(p) = V() - TH(p) (where T is temperature)

H(P) = - D, P(x,y)log(P(x,y))
XYy

U,(P) = E,[ U,(x,y) ] (expected utility for a)  Free Utility (2 players) (2)

F(P) = U,(P) — TH(P) (T isuncertainty or error)

Strategic Choice of Preferences: the Persona Model

David Wolpert , Julian Jamison , David Newth and Michael Harre

The University of Sydney From the journal The B.E. Journal of Theoretical Economics Page 57
https://doi.org/10.2202/1935-1704.1593



Utility value and the Free Energy Principle

H(P) = - ), P(x y)log(P(x,y))
XY

U,(P) = E,[ U,(x,y) | (expected utility for a)  Free Utility (2 players) (2)

F(P) = U,(P) - TH(P) (Tisuncertainty or error)

Optimising these "free functionals" leads to standard exponential solutions:
P(x) « exp(-B V(P))

P(x|x =x;) « exp(BU,(Py)|x = x;))
Pyly=y;) < exp(BUy(Px) |y = y;))

Strategic Choice of Preferences: the Persona Model
David Wolpert , Julian Jamison , David Newth and Michael Harre

The University of Sydney From the journal The B.E. Journal of Theoretical Economics Page 58
https://doi.org/10.2202/1935-1704.1593



Utility value and the Free Energy Principle

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) | Cite this article

Friston’s Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed 0 and
actual states s via Bayes Theorem:
P(s,0) = P(o|s)P(s)

The University of Sydney Page 59



Utility value and the Free Energy Principle

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) | Cite this article

Friston’s Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed 0 and
actual states s via Bayes Theorem:

P(s,0) = P(o|s)P(s)

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for
the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

Q*(s) = argmin F( Q) (3)
Q(s)
Q*(s) = P(s|o) 4)

The University of Sydney
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Utility value and the Free Energy Principle

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) | Cite this article

Friston’s Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and
actual states s via Bayes Theorem:

P(s,0) = P(o|s)P(s)

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for
the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

Q*(s) = argmin F(Q) @)
Q)
Q*(s) =~ P(slo) )
F(Q) = Egllog(Q(s)) — log(P(slo) )] (5)

= Eg(-log(P(sl0))) - H(Q®))
b entlzropy 6)

cross entropy
= expected log loss

The University of Sydney Page 61



Utility value and the Free

Information, Utility and Bounded Rationality

Pedro Alejandro Ortega and Daniel Alexander Braun

Department of Engineering, University of Cambridge
Trumpington Street, Cambridge, CB2 1PZ, UK
{dab54,pao32}@cam.ac.uk

Energy Principle

Path Integral Control and Bounded Rationality

Daniel A. Braun Pedro A. Ortega Evangelos Theodorou Stefan Schaal
Univ. Southern California Univ. Cambridge Univ. Southern California Univ. Southern California
Los Angeles, USA Cambridge, UK Los Angeles, USA Los Angeles, USA

dab54@cam.ac.uk peortega@dcc.uchile.cl etheodor@usc.edu sschaal @usc.edu

1. Control. Given an initial policy represented by the probability measure P;

and the constraint utilities U, we are looking for the final system P that
optimizes the trade-off between utility and resource costs. That is,

Py =arg nmax Z Pr(z)U,(z) — o Z Pr(z)log

The University of Sydney

reX

reX

Pr(z)
P;(x)

(2)

arg max (Z P;(z)U.(z) — Z Ps(z)log 1;’:((::))) 5
®)

The solution to this variational problem is given by

P(z) x Pi(x) exp(éU*(x))

In particular, at very low temperature o ~ 0, the maximum
expected utility principle is recovered as

Jr—Jix Z Ps(z)U,(z),
TeEX

and hence resource costs are ignored in the choice of Py,
leading to P; ~ §,-(x), where z* = argmax, U,(z).
Similarly, at a high temperature, the difference is

P (z)
Ji—-Jim —a Z P¢(z)log Pf(m) ;
TEX &

Page 62




Utility value and the Free Energy Principle

What is epistemic value in free
energy models of learning and
acting? A bounded rationality
perspective

Pedro A. Ortega’

and Daniel A. Braun®3

P(a) 1
Po(a) B

with the solution P*(s|a) = Po(s|a)exp{BU(s,a)}/ Zs(a)
and P*(a) = Po(a)exp{3logZs(a)}/Z,

1 1
t P = -
1}1(?1}3( ;%a) p (a) ( ﬁD [P(sl@)Paes (sla)] o log

logzﬁ(a))

Assuming: Pies(s|a) = Py(s) and a — 00

N, e’

extrinsic—value intrinsic—value

— Dia[P(510)|Paes(s)] = Epgal0gPues(s)] + HIP(s]a)]

The University of Sydney Page 63



Utility value and the Free Energy Principle

What is epistemic value in free
energy models of learning and
acting? A bounded rationality
perspective

Pedro A. Ortega’

and Daniel A. Braun®3

P(a) 1
Po(a) B

with the solution P*(s|a) = Po(s|a)exp{BU(s,a)}/ Zs(a)
and P*(a) = Po(a)exp{3logZs(a)}/Z,

1 1
t P = -
I}l(?z%( Pfg‘cla) p (a) ( ﬁD [P(sl@)Paes (sla)] o log

logzﬁ(a))

Note: Pues(s|a) = Poy(s|a)exp{BU(s,a)}/Zs(a) by definition (i.e. a prior)

N, e’

extrinsic—value intrinsic—value

— D1[P(s|a)||Paes(s)] = Ep(sja) [logPaes(s)] + H[P(s|a)]

The University of Sydney Page 64



Utility value and the Free Energy Principle

What is epistemic value in free
odels of learning and - - =
:2:;%%? bounded raticl)nality (F( Q ) - gQ( 10g(P(S|O)) )J ﬁ( Q(S) )J

erspective M ro
persp Cross entropy ehopy
Pedro A. Ortega’ = expected log loss

and Daniel A. Braun®3

Q. (7) = —DIQ(s:|7)[|P(s|7)] = Eg(s, m) [In P(sc|m)] + H[Q(s:|m)]

"

v 'v'

KL divergence Extrinsic value Epistemic value

N, e’

extrinsic—value intrinsic—value

— D1[P(s|a)||Paes(s)] = Ep(sja) [logPaes(s)] + H[P(s|a)]

The University of Sydney Page 65



Utility value and the Free Energy Principle

What is epistemic value in free

acting? A bounded rationaty T (Q) = Eg(-log(P(slo))) ~ H(Q(s))

. Y At
erspective entro
persp cross entropy 124
Pedro A. Ortega’ = expected log loss
and Daniel A. Braun®3 ]I

.

Q. (7) = —DIQ(s:|7)[|P(s|7)] = Eg(s, m) [In P(sc|m)] + H[Q(s:|m)]

L o J/

W "

KL divergence Extrinsic value Epistemic value

N, e’

nsic— intrinsic—value
Ortega and Braun: with utility extrinsic—value

The University of Sydney Page 66
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Utility value and the Free Energy Principle

@  RESEARCH ARTICLE f ¥ in @« % =

Human-level play in the game of Diplomacy by combin-
ing language models with strategic reasoning

META FUNDAMENTAL Al RESEARCH DIPLOMACY TEAM (FAIR)T, ANTON BAKHTIN . NOAM BROWN , EMILY DINAN , GABRIELE FARINA , COLIN FLAHERTY

DANIEL FRIED ™, ANDREW GOFE ™ , JONATHAN GRAY ™ | [...], AND MARKUS ZIJLSTRA +17 authors  Authors Info & Affiliations

SCIENCE - 22 Nov 2022 - FirstRelease - DOL 10.1126/science.ade9097

piKL: KL-regularized planning

piKL assumes player i seeks a policy mm; that maximizes the modified utility function
U,‘(;‘Z',‘,irg,')= u; (ﬂj,ﬂ;i)—ADKL(ﬂ:j | 7:) (D)

where m_; represents the policies of all players other than i, and u;(m;, m_;) is the ex-
pected value of m; given that other players play m_;. Specifically, let
0" (a)= ui(a;, z'7') and let

7 (ap)ec m(aexp| 45| @)

On each iteration t, piKL updates its prediction of the players’ joint policies to be

al =(ﬂ)zt‘l +(%)7rm (3)

1
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Utility value and the Free Energy Principle

@  RESEARCH ARTICLE f ¥ in @« % =

Human-level play in the game of Diplomacy by combin-
ing language models with strategic reasoning

META FUNDAMENTAL Al RESEARCH DIPLOMACY TEAM (FAIR)t, ANTON BAKHTIN = , NOAM BROWN , EMILY DINAN , GABRIELE FARINA " , COLIN FLAHERTY
DANIEL FRIED ', ANDREW GOFE " , JONATHAN GRAY = ,[...], AND MARKUS ZIJLSTRA +17 authors  Authors Info & Affiliations
SCIENCE - 22 Nov 2022 - FirstRelease - DOL 10.1126/science. .ade9097

Cisero's equivalent of Free Energy is:

U(rj, ) = u(ny,m;) + A Dy (7| 7)) (12)

= u(m,n;) + ACH(m;) + H(m;, 7;) )
Entropy  cross entropy (13)

g

Log—loss game

(local) MaxEni Game Theory
= u(n;,n;) +A(-H(m;) + H(m;, 7;)) (14)

Entropy cross entropy
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Bringing These Together in a Dual Process Model

Model  RFsizes  Num.
layers units

Increase in complexity (number of subunits), RF size and invariance
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Model  RFsizes  Num.
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Bringing These Together in a Dual Process Model

Model  RFsizes  Num. Model  RF sizes  Num.
layers i layers units

Unsupervised
task-independent leaming

Increase in complexity (number of subunits), RF size and invariance
Increase in complexity (number of subunits), RF size and invariance
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Final word from Herb Simon

In an information-rich world, the wealth of information means a dearth of something else:
a scarcity of whatever it is that information consumes. What information consumes is
rather obvious: it consumes the attention of its recipients. Hence a wealth of information
creates a poverty of attention and a need to allocate that attention efficiently among the
overabundance of information sources that might consume it.

Designing Organizations for an Information-Rich World (1971)

Thank you
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