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Is “intelligence” singular?

On the shoulders of giants

Stable Diffusion, inspired by Isaac Newton
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We are a social species

Hunter-gatherers
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We are a social species

Hunter-gatherers Early agrarian culture
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We are a social species

Hunter-gatherers Early agrarian culture First city-based civilisations
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We are a social species

The University of Sydney Progressively more complex cities, states, and societies Page 6
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We are a social species

“Limits to higher sophistication [ ...] in
chimpanzees may stem from social features.’

)

The origins of human cumulative culture:
from the foraging niche to collective
Intelligence (2021)

A. Migliano and L. Vinicius
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We are a social species

Long-distance networking is also crucial to foraging,
cooperation and cultural exchange.

Mapping hunter—gatherer social networks and between-camp migration. New radio sensor technologies ((a), insert) can be
used to trace contacts between individuals in hunter-gatherer populations (2), and reconstruct proximity networks within
and between residential camps (dot colours, (b)).

The origins of human cumulative culture:
from the foraging niche to collective
Intelligence (2021)

A. Migliano and L. Vinicius

The University of Sydney Page 8



We are a social species

Our social networks have not increased in size in the last 200,000 years

Support clique
& Ego

9 Alter

Sympathy group
Affinity group
Active network

Tie Strength
S

Ego network structure in online social networks
and its impact on information diffusion (2016)
V. Arnaboldi et al
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We are a social species

Our social networks have not increased in size in the last 200,000+ years
- despite online and other social technologies

How many friends do you need to maintain your
social network?

ABC Science / By Anna Salleh
Posted Wed 18 May 2016 at 3:32pm, updated Thu 19 May 2016 at 9:35am

' N

You don't need to like everyone in your network for it to work. (Getty Images)
The University of Sydney Page 10



We are a social species

INTERFACE The social brain: scale-invariant layering
of Erdds—Rényi networks in small-scale
human societies

rsif.royalsocietypublishing.org

Michael S. Harré and Mikhail Prokopenko

RESea I'Ch CrossMark

uuuuuuuuuuuuu Complex Systems Research Group, Faculty of Engineering and IT, The University of Sydney, Sydney, Australia

(@)

Figure 1. Two different social network models. (a) Random links form

@ ________________________ 9«0 @ between sub-group members. As the average number of links per person

i =2 increases in discrete steps, the network size also increases in predictable,
=2 discrete, steps. (b) A structured hierarchy similar to modern military, bureau-
dyadic links: = support clique links: --.... sympathy group links: - layer 3links: ==+ cpatic and corporate structures in which each layer is ‘managed’ by a
®) / coordinator. (Online version in colour.)
i=3
i=2
27

Page 11




We are a social species

(b)  regular small-world
p=0
© Collective minds: social network topology
shapes collective cognition
Ida Momennejad
grid graph ring graph community graph Microsoft Research NYC, New York, NY, USA
The University of Sydney https://royalsocietypublishing.org/doi/pdf /10.1098 /rsth.2020.0315 Page 12

hnps / /www.nature.com/articles /s41598-019-45576-3



We are a social species

Open access ©@®® Research article First published online September 13, 2022

Collective intelligence for deep learning: A survey of recent developments

David Ha & &< and Yujin Tang < View all authors and affiliations
All Articles https://doi.org/10.1177/26339137221114874

Figure 2. Left: Trajan’'s Bridge at Alcantara, built in AD 106 by Romans (Wikipedia, 2022). Right: Army ants forming
a bridge (Jenal, 2011).

The University of Sydney Page 13
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Social group size

We are a social species

Homo Sapiens i Neurolmage
X " g = Volume 245, 15 D ber 2021, 118693
100 — estimated group size: ~105», rﬁ;‘%%‘ e
- Comparative connectomics of the primate social
i brain
Chihiro Yokoyama L2 0 X, Joonas A. Autio ® 1 Takuro lkeda ],jéréme Sallet b ¢, Rogier B. Mars de
— , David C. Van Essen { Matthew F. Glasser f 8 Norihiro Sadato ' !, Takuya Hayashi ) 2=
A
1.6*10" neurons
10
_ Callimico
| e ]
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]
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Cortical neuron count
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We are a socio-cognitive species

But how do we do it?

Me @ @ You

The University of Sydney Page 15



We are a socio-cognitive species

But how do we do it?

Me@—»® «@You
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We are a socio-cognitive species

But how do we do it?

oy

Me@ ﬁh @ You

You
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We are a socio-cognitive species

But how do we do it?

Me@_bd_@%u Me@
W ?
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We are a socio-cognitive species

But how do we do it?

o,

Q;

@ @

The University of Sydney Page 19

00@

e wg




We are a socio-cognitive species

But how do we do it?
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We are a socio-cognitive species

But how do we do it?

“We must try to put ourselves inside their skin and look at us through their eyes,
just to understand the thoughts that lie behind their decisions and their actions.”

Robert McNamara The Fog of War

The University of Sydney Page 21



We are a socio-cognitive species

But how do we do it?

“In the Cuban Missile Crisis [...] we did put ourselves in the skin of the Soviets.
In the case of Vietnam, we didn't know them well enough to empathize.
And there was total misunderstanding as a result.”

Robert McNamara The Fog of War

The University of Sydney Page 22



We are a socio-cognitive species

But how do we do it? — It s difficult to get right

TR

XX
i
<  J

THE CAR
THAT KNEw
TOO MUCH

JEAN-FRANCOIS BONNEFON

www.moralmachine.net
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We are a socio-cognitive species

But how do we do it? — It s difficult to get right
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We are a socio-cognitive species

But how do we do it? — It s difficult to get right

Australia

www.moralmachine.net

The University of Sydney Page 25



We are a socio-cognitive species

But how do we do it? — It s difficult to get right

Australia vs USA

www.moralmachine.net

The University of Sydney Page 26



We are a socio-cognitive species

But how do we do it? — It s difficult to get right

Australia vs USA Australia vs Brunei

www.moralmachine.net

The University of Sydney Page 27



Where is Al up to?

Cooperating and competing in the game “Diplomacy”

A deceptively simple, extremely nuanced game, of strategy and cunning.

JFK enjoyed the game, as did Henry Kissinger.

The University of Sydney Page 28



Where is Al up to?

Cooperating and competing in the game “Diplomacy”

To win, a player must not only play strategically, but form alliances, negotiate,
persuade, threaten, and occasionally deceive.
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Where is Al up to?

Cooperating and competing in the game “Diplomacy”

To win, a player must not only play strategically, but form alliances, negotiate,
persuade, threaten, and occasionally deceive.
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Where is Al up to?

Cooperating and competing in the game “Diplomacy”

It therefore presents challenges for Al that go far beyond those faced
either by systems that play games like Go and chess or by chatbots that
engage in dialog in less complex settings.

foreignpolicy com NIKOLE RIFKIN ILliUSTRATION

The University of Sydney The Game That Ruins Friendships Page 35
and Shapes Careers




Where is Al up to?

Cooperating and competing in the game “Diplomacy”

(o2
0,0 @ E

>

‘ 0,0
‘

Strategic Reasoning Natural Language Processing
CICERO predicts the moves other players are CICERO grounds its conversations in a set of
likely to make, as well as what moves they expect carefully chosen plans, so it can negotiate, offer
CICERO to make, and uses that information to advice, share information, and make

create a strategic plan. agreements with other players.

The University of Sydney Page 36



Where is Al up to?

Cooperating and competing in the game “Diplomacy”

The University of Sydney

Example of coordination - CICERO is AUSTRIA

-

ITALY: What are you thinking long term?
Should | go for Turkey or head west

\
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Where is Al up to?

Cooperating and competing in the game “Diplomacy”

The University of Sydney

Example of coordination - CICERO is AUSTRIA

7~

ITALY: What are you thinking long term?
Should | go for Turkey or head west

AUSTRIA:Yeah, he went to Armenia which is really
great. You can go either way, but if Turkey is
committing to Russia you could always lepanto

\
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Where is Al up to?

Cooperating and competing in the game “Diplomacy”

The University of Sydney

Example of coordination - CICERO is AUSTRIA

7~

\

ITALY: What are you thinking long term?
Should | go for Turkey or head west

AUSTRIA:Yeah, he went to Armenia which is really
great. You can go either way, but if Turkey is
committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong,
especially since he committed so hard against Russia

Page 39



Where is Al up to?

Cooperating and competing in the game “Diplomacy”

The University of Sydney

Example of coordination - CICERO is AUSTRIA

7~

\

ITALY: What are you thinking long term?
Should | go for Turkey or head west

AUSTRIA:Yeah, he went to Armenia which is really
great. You can go either way, but if Turkey is
committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong,
especially since he committed so hard against Russia

ITALY:I'm down to go for it. Would
definitely need your help in 02 though

Page 40



Where is Al up to?

Cooperating and competing in the game “Diplomacy”

The University of Sydney

Example of coordination - CICERO is AUSTRIA

7~

ITALY: What are you thinking long term?
Should | go for Turkey or head west

AUSTRIA:Yeah, he went to Armenia which is really
great. You can go either way, but if Turkey is
committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong,

especially since he committed so hard against Russia

ITALY:I'm down to go for it. Would
definitely need your help in 02 though

AUSTRIA: Of course, happy to do that!

\
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Where is Al up to?

Cooperating and competing in the game “Diplomacy”

The University of Sydney

Example of coordination - CICERO is AUSTRIA

7~

ITALY: What are you thinking long term?
Should | go for Turkey or head west

AUSTRIA:Yeah, he went to Armenia which is really
great. You can go either way, but if Turkey is
committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong,

especially since he committed so hard against Russia

ITALY:I'm down to go for it. Would
definitely need your help in 02 though

AUSTRIA: Of course, happy to do that!

ITALY: Fantastic!

\
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Where is Al up to?

Lets extend this: Al in the loop policy analysis

Cold war
documents

The University of Sydney Page 43



Where is Al up to?

Lets extend this: Al in the loop policy analysis

afliss
Cold war n

documents Train ChatGPT

The University of Sydney
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Where is Al up to?

Lets extend this: Al in the loop policy analysis

w 2,
A - T

documents Train ChatGPT
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Where is Al up to?

Lets extend this: Al in the loop policy analysis

JFK attacks Cuba

Cold war
documents Train ChatGPT

anfliss
’ n :* Khrushchev + 10 years power

A “local” nuclear war

The University of Sydney Page 46



What is Al up to?

nature Cooperative Al: machines must
COMMENT | 04 May 2021 leal"n to ﬁnd common ground

To help humanity solve fundamental problems of cooperation, scientists need to
reconceive artificial intelligence as deeply social.

Allan Dafoe &, Yoram Bachrach &, Gillian Hadfield &, Eric Horvitz &, Kate Larson & & Thore
Graepel &

A huddle at the 2017 United Nations Climate Change Conference, where attendees cooperated on Page 47
mutually beneficial joint actions on climate. Credit: Sean Gallup/Getty

The University of Sydney




What is Al up to?

nature Cooperative Al: machines must
COMMENT | 04 May 2021 leal"n to ﬁnd common ground

To help humanity solve fundamental problems of cooperation, scientists need to
reconceive artificial intelligence as deeply social.

Allan Dafoe &, Yoram Bachrach &, Gillian Hadfield &, Eric Horvitz &, Kate Larson & & Thore

Graepel &
Tit - for - Tat
Free rider
Cooperative

Stable Diffusion

The University of Sydney
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Principles of Games Against Nature

Game theory, maximum entropy, minimum
discrepancy and robust Bayesian decision
theory

Peter D. Grunwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

The University of Sydney Page 49



Principles of Games Against Nature

Game theory, maximum entropy, minimum
discrepancy and robust Bayesian decision
theory

Peter D. Grunwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

H(X) : ZP(iB logp(z) = E[— log p(X)], Entropy is the expectation of -log(p(x))
rxeX
H(P,Q) = Zp x) log q(x) (Eq.1) Definition of “Cross Entropy” for
zeEX 9. discrete distributions

The Cross Entropy term is the log-loss in a “game against nature”: Nature = p(x)

The University of Sydney Page 50



Principles of Games Against Nature

Game theory, maximum entropy, minimum
discrepancy and robust Bayesian decision
theory

Peter D. Grunwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

H(P)= inf Ep{~logq(X)} < Ep(~log p* (X)) = H(P")

The University of Sydney Page 51



Principles of Games Against Nature

Game theory, maximum entropy, minimum
discrepancy and robust Bayesian decision
theory

Peter D. Grunwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

H(P)= inf Ep{~logq(X)} < Ep(~log p* (X)) = H(P")

sup Ep{—log p*(X)} = H(P*).
Pel

The University of Sydney

Page 52



Principles of Games Against Nature

Game theory, maximum entropy, minimum
discrepancy and robust Bayesian decision
theory

Peter D. Grunwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

H(P)= inf Ep{~logq(X)} < Ep(~log p* (X)) = H(P")

sup Ep{—log p*(X)} = H(P*).
Pel

sup iInf Ep{—1logg(X)} = 1nf sup Ep{—1logqg(X)}.
Pel 4€# q€A per

The University of Sydney
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Principles of Games Against Nature

Game theory, maximum entropy, minimum
discrepancy and robust Bayesian decision

theory

Peter D. Grunwald, A. Philip Dawid
Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

Cross Entropy: H(P,Q) = Ep(-Log,(Q)) -
Entropic Values >

20 s

Entropy H(Q) = Eq(-Log,(Q))

0.0 0.2 0.4 06 0.8 10 Prore

The University of Sydney

Entropy is the minimization of the loss
In a game against nature, achieved by

the “player” varying q(x)
In the diagram the blue curve is the
cross-entropy term for different values

of q(x)

The entropy is the red curve for
different values of q(x)

Page 54



Maximum Entropy and Game Theory

Free Energy, Free Utility:

Hp) = - ), p@)log(p(x))

V(p) = internal energy (potential function) - Helmholtz Free Energy (1)

F(p) = V() - TH(p) (where T is temperature)

The University of Sydney Page 55



Maximum Entropy and Game Theory

Free Energy, Free Utility:

Hp) = - ), p@)log(p(x))

V(p) = internal energy (potential function) - Helmholtz Free Energy (1)

F(@) = V(p) - TH(p) (where T is temperature)

H(P) = - D, P(x,y)log(P(x,y))
XYy

U,(P) = E,[ U,(x,y) ] (expected utility for a)  Free Utility (2 players) (2)

F(P) = U,(P) — TH(P) (T isuncertainty or error)

The University of Sydney Page 56



Maximum Entropy and Game Theory

H(P) = - ), P(x y)log(P(x,y))
XY

U,(P) = E,[ U,(x,y) | (expected utility for a)  Free Utility (2 players) (2)

F(P) = U,(P) - TH(P) (Tisuncertainty or error)

Optimising these "free functionals" leads to standard exponential solutions:
P(x) « exp(-B V(P))

P(x|x =x;) « exp(BU,(Py)|x = x;))
Pyly=y;) < exp(BUy(Px) |y = y;))

Strategic Choice of Preferences: the Persona Model
David Wolpert , Julian Jamison , David Newth and Michael Harre

The University of Sydney From the journal The B.E. Journal of Theoretical Economics Page 57
https://doi.org/10.2202/1935-1704.1593



Maximum Entropy and Game Theory

.. L & e L. R
Col: T :ag. b Row: | T |a, b,
B|c d B¢ dy
Article
Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes
The University of Sydney Michael S. Harré '* and Terry Bossomaier >
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Maximum Entropy and Game Theory

el L e v L I
Col: | T |a. b, Row: | T |a, b
B |c. d B¢ d,

E(Uc) = Zp'r t)Pc J)U”

EU,) = Zpr 0)pe(7) U7

Article

Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes

The University of Sydney Michael S. Harré »* and Terry Bossomaier > Page 59




Maximum Entropy and Game Theory

el L e v L I
Col: | T |a. b, Row: | T |a, b
B e d B e dy

EU,) = Zpr i)pe(7)U:”

E(U,) = Zpr i)pe(5) Uy

EWe)e: Y _pep:)US 2 D pr(@pe(i)Ue? ¥ pe(j) and

i,J
EU)e: Y _mr@p(UF = ) pr(@)pe(i)UF V pe(i).
T, ij
Article

Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes

The University of Sydney Michael S. Harré '* and Terry Bossomaier >
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Maximum Entropy and Game Theory

el L e v L I
Col: T :ag. b Row: | T |a, b
B | c. d, B¢ d,

Article

Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes

The University of Sydney Michael S. Harré »* and Terry Bossomaier > Page 61




Maximum Entropy and Game Theory

.. L & e L. R
Col: | T |a. b, Row: | T |a, b
B | c. d, B¢ d,
k k
px(z) > 0V, Zp:c(@) = 1, Zpr(i)pc(j)U:::,j T E(Ux)
i=1 i,j=1

[’(p:r) = S(pm) + Bz Zpr(i)pc(j)U;iij + Bo Zp:n(?:):

Article

Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes

The University of Sydney Michael S. Harré '* and Terry Bossomaier >

Page 62



Maximum Entropy and Game Theory

.. L & e L. R
Col: | T |a. b, Row: | T |a, b
B | c. d, B¢ d,
k k
px(z) > 0V, Zp:c(@) = 1, Zpr(i)pc(j)U:::,j T E(Ux)
i=1

i,j=1

[’(p:r) = S(pm) + Bz Zpr(i)pc(j)U;iij + Bo Zp:n(?:):

OL(pz) : .
- = —IH(P::::(?»)) +/6£B E pm(])U;;’J ‘l‘ﬁﬂ —1 :0:
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J
Article
Strategic Islands in Economic Games: Isolating Economies
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Maximum Entropy and Game Theory

el L e v L I
Col: | T |a. b, Row: | T |a, b
B | c. d, B¢ d,

p=(e) 2 O0Vi, D pa()) = 1, D pr(@pe)Vz = E(Ua).

1,j=1

[’(p:r) = S(pm) + B Zpr(i)pc(j)U;;j + Bo pr(i):

— (@) + B > B (YU + fo—1=0,
J

P
pe(i) = 2, exp (B:chx(j)U;”")?
j

> This the Quantal Response Equilibrium (QRE)

= Z lexp (BE,E(UQ:\S:B = ’i))a
,

Article

Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes

The University of Sydney Michael S. Harré !* and Terry Bossomaier ? Page 64



Maximum Entropy and Game Theory

Figure 4. Perturbed QRE solutions for 6. = d, € {0.2,0,—0.2} from left to right with a 3
pair 3. = 3, = 2, the equilibrium strategy is where the black dot is, see Equations (38)—(39).

. E(ucor)

05

Article

Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes

The University of Sydney Michael S. Harré '* and Terry Bossomaier > Page 65




Maximum Entropy and Game Theory

Figure 6. Perturbed QRE solutions for both players for () values and the corresponding
expected utilities: {4,,d.} = {0.2, —0.2}.

Article

Strategic Islands in Economic Games: Isolating Economies
From Better Outcomes

The University of Sydney Michael S. Harré !* and Terry Bossomaier > Page 66




Friston’s Free Energy Principle for Cognition

3.1. Free Energy in Physics

We first introduce the Helmholtz free energy ﬁ'p used in physics as the internal energy of the system V(m)
having discrete states x less the Shannon entropy of the system:

H(z) = —ZP(%‘) log (P (z:)) (3)

multiplied by the temperature of the system T:

Fp = V(z) -TH(z). )

Information Theory for Agents in Artificial Intelligence, Psychology, and
Economics
by 2 Michael S. Harré &1

Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia

The University of Sydney Page 67

Entropy 2021, 23(3), 310; https://doi.org/10.3390/e23030310




Friston’s Free Energy Principle for Cognition

3.2. Free Utility in Economics

Equation (4) has an economic counterpart that appears, for example, in the earlier work of Wolpert [57,58] on
predictive game theory and collective intelligence. In its simplest form an agent chooses a distribution p over the
utilities U (z;) over a finite set of discrete choices {x; } such that they have an expected utility:

E,[U(z)] = ZP:’U(%) 5)

The ‘free utility’ of this situation is given by:

Fg = E4[U(z)] -TH (=), 6)

Information Theory for Agents in Artificial Intelligence, Psychology, and
Economics

by 2 Michael S. Harré &

Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia

The University of Sydney Page 68
Entropy 2021, 23(3), 310; https://doi.org/10.3390/e23030310




Friston’s Free Energy Principle for Cognition

P(z;) = 2 1ePBlCE) ()
with 2 normalising the distribution and the free energy is:

Fw) = S +67 5 P() log (P(2). ®

— E,[G(2)] - f'H (2),
— Utility — 8~ Entropy.

©)

Information Theory for Agents in Artificial Intelligence, Psychology, and
Economics

by #2) Michael S. Harré & ©

Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia

The University of Sydney Page 69

Entropy 2021, 23(3), 310; https://doi.org/10.3390/e23030310




Friston’s Free Energy Principle for Cognition

The free energy expression: Substituting the last two distributions into Equation (17) we have the following form:

F(Q(s,u)) = Eq[-log (P(o,s,u|m))] — H(Q(s,u)), (25)

= Q(s,u) = arg Hgn F(Q(s,u)). (26)

Information Theory for Agents in Artificial Intelligence, Psychology, and
Economics

by 2 Michael S. Harré &1

Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia
The University of Sydney Page 70
Entropy 2021, 23(3), 310; https://doi.org/10.3390/e23030310




Friston’s Free Energy Principle for Cognition

Published: 13 January 2010
The free-energy principle: a unified brain theory?
Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) \ Cite this article

Friston’s Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed 0 and
actual states s via Bayes Theorem:
P(s,0) = P(o|s)P(s)

The University of Sydney Page 71



Friston’s Free Energy Principle for Cognition
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P(s,0) = P(o|s)P(s)

Q*(s) = argmin F( Q)

(e =
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Q*(s) = Plslo)
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note: Grunwald and Dawid showed

that this is a “game” between nature
and decision maker (2004)
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We have a Markov Decision Process: M = {S, A, T, r}

— S € S is a state in the state space,

— a € A is an action in the action space of the agent

— T is the transition model from one state to another

— 1(5;) is the reward, a function of the state S at time ¢

—T1: SXA €[0,1] is an agent's "policy", a state-action tuple mapping s; and 4, to a probability at
time ¢

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of
Mind: Current Methods and Open Problems

by ) Jaime Ruiz-Serra  and i) Michael S. Harré * &

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of
Sydney, Sydney, NSW 2006, Australia
“ Author to whom corresp should be
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The agent's policy is a probability function:
nm=Pla=a|s =s)

An optimal policy for 71 : 8 = A is that ©* which maximises the expected accumulation of
reward = long term discounted value, i.e. the following expected value:

V(s) = E(r(s1) + yr(sy) + ¥#(s3) + ... | ©) where ¥ € [0, 1] = discount (Bellman's Equation for
policy 77)
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The reward function (here, cost to be minimised) R comprises a state term r(s) > 0 (to
be inferred) and a control term that is the KL-divergence between the control dynamics
and the passive dynamics (in order for the KL divergence to be defined, it is required that
7(s’|s) = 0 when Pr(s’|s) = 0, a condition that is imposed),

R(s, 7t(-|s)) = r(s) + Dgr(7t(-|s)|| Pr(-|s)). (41)
A desirability function z(s) = exp(—V/(s)) is used to define the optimal control dynamics

Pr(s’|s)z(s") .

BT (DE -

T (s']s)
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and the passive dynamics (in order for the KL divergence to be defined, it is required that
7(s’|s) = 0 when Pr(s’|s) = 0, a condition that is imposed),

R(s, (:]s)) = r(s) + Dxe(7t(-[s)[| Pr(-[s)). (41)
A desirability function z(s) = exp(—V/(s)) is used to define the optimal control dynamics

Pr(s’|s)z(s")
*(s'|s) = : (42)
¥ = £
Under passive dynamics, Pr(t|sg) = [1;L; Pr(s¢|s;_1) is the probability of a trajectory.
For the same trajectory to occur when the control dynamics are applied, the probability is

Pr(t|so) exp(— Yilo T’(St))

2(50) (44)

Pr(t|so, 7) =
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Now compare the reinforcement learning algorithm:

R(s, 7(-s)) = r(s) + Dgr(7t(-|s)|| Pr(:]s)).

The University of Sydney
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Now compare the reinforcement learning algorithm’s reward:
R(s, 7t(-|s)) = r(s) + Dgr(7(-|s)|| Pr(:]s)).

With the following decomposition of the KL-divergence:

U(m;, m_y) = w(m;, m_;) + A Dy (113 | 75)
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Which has the following “equilibrium” solution by MaxEnt optimization:
p(ai | T(—i) = P(af) exp (A_lu(a;' | 7t_; ))Z_1 ( Z'is a normalizing factor )

U(rt;, ;) = w(m, m_;) + A Dy (73| 75)

= u(n, ;) + A(H(m;) + H(m;, ;) )

Entropy cross entropy

N

N

Log—loss game

(local) MaxEnt Game Theory
= u(m;,m;) +AM(-H(n;) + H(m;, 7))

Entropy cross entropy
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The essential point of this section are these relationships, the KL-Divergence is an extension of

MaxEnt and Free Energy principles:

" F(Q) = Eollog(Q(s)) — log( P(sl0)) ]

= Eg(-log(P(slo))) - H(QE))

entropy

cross entropy
\_ = expected log loss

~

CHP) = - Y, P y)log(P(x,))
XY

U,(P) = E,[ U,(x,y) ] (expected utility for a)

F(P) = U,(P) — TH(P) (T isuncertainty or error)
b

A

/u(ﬂi,n-i) = u(n;, m_;) + ADg (m; | 7))

= u(n;,m;) + ACH(m;) + H(m;,7;) )

Entropy cross entropy

~

Log-loss game

(local) MaxEnt Game Theory
= u(n;,n_;) +A(-H(m;) + H(m;,7;))
\_ Entropy

cross entropy

V'S

Grunwald and Dawid showed

that this is a “game” between nature
and decision maker (2004)

Game theory, maximum entropy, minimum discrepancy and
robust Bayesian decision theory
PD Griinwald, AP Dawid - the Annals of Statistics, 2004 - projecteuclid.org

This is the game theory version of MaxEnt
or equivalently the “Free Utility” optimization

This is a combination of the above
equations
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Review
Inverse Reinforcement Learning as an Algorithmic Approach to
Theory of Mind: Current Methods and Open Problems

Jaime Ruiz-Serra 1 and Michael Harré 1 *

yI
RE MDP\R
Actor Environment Observer
T i
—- R !
Actor model q)(TE) e VL(B) ‘_E[CD(T)|6, T] _‘
MDP\R o 5 |ouls
Environment model
¢
Welghts Features

Figure 3. Diagram of the MaxEnt IRL algorithm (see Algorithm 6)
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nature Cooperative Al: machines must
COMMENT | 04 May 2021 leal"n to ﬁnd common ground

To help humanity solve fundamental problems of cooperation, scientists need to
reconceive artificial intelligence as deeply social.

Allan Dafoe &, Yoram Bachrach &, Gillian Hadfield &, Eric Horvitz &, Kate Larson & & Thore
Graepel &

A huddle at the 2017 United Nations Climate Change Conference, where attendees cooperated on Page 96
mutually beneficial joint actions on climate. Credit: Sean Gallup/Getty
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