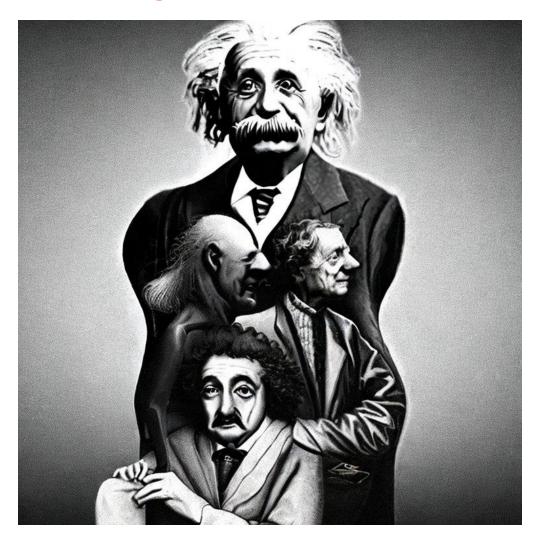
Game Theory and the Free Energy Principle for Artificial Intelligence

Dr. Michael Harré
Modelling and Simulation Group
School of Computer Science
University of Sydney

Is "intelligence" singular?



On the shoulders of giants

Stable Diffusion, inspired by Isaac Newton

Hunter-gatherers

Hunter-gatherers

Early agrarian culture

Hunter-gatherers

Early agrarian culture

First city-based civilisations

Early agrarian culture



First city-based civilisations

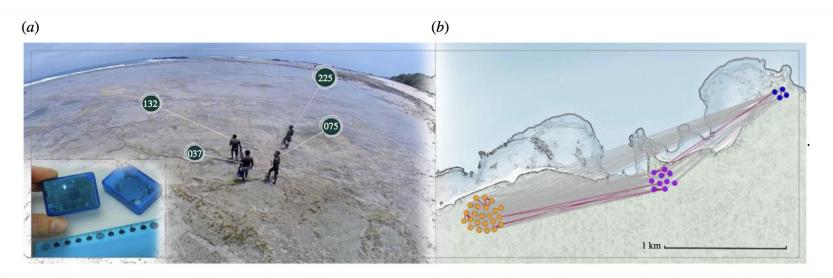
Progressively more complex cities, states, and societies

"Limits to higher sophistication [...] in chimpanzees may stem from social features."

The origins of human cumulative culture: from the foraging niche to collective Intelligence (2021)

A. Migliano and L. Vinicius

Long-distance networking is also crucial to foraging, cooperation and cultural exchange.

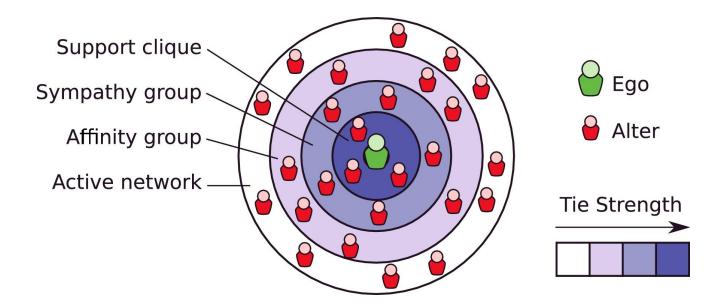


Mapping hunter–gatherer social networks and between-camp migration. New radio sensor technologies ((a), insert) can be used to trace contacts between individuals in hunter–gatherer populations (a), and reconstruct proximity networks within and between residential camps (dot colours, (b)).

The origins of human cumulative culture: from the foraging niche to collective Intelligence (2021)

A. Migliano and L. Vinicius

Our social networks have not increased in size in the last 200,000 years



Ego network structure in online social networks and its impact on information diffusion (2016) V. Arnaboldi et al

Our social networks have not increased in size in the last 200,000+ years - despite online and other social technologies

How many friends do you need to maintain your social network?

ABC Science / By Anna Salleh

Posted Wed 18 May 2016 at 3:32pm, updated Thu 19 May 2016 at 9:35am

You don't need to like everyone in your network for it to work. (Getty Images)

INTERFACE

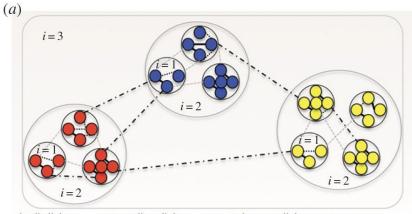
rsif.royalsocietypublishing.org

The social brain: scale-invariant layering of Erdős – Rényi networks in small-scale human societies

Research

Michael S. Harré and Mikhail Prokopenko

Complex Systems Research Group, Faculty of Engineering and IT, The University of Sydney, Sydney, Australia



dyadic links: — support clique links: … sympathy group links: — layer 3 links: — - -

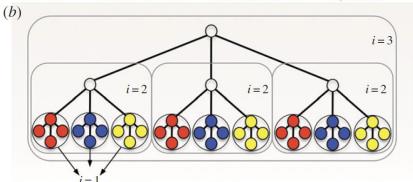
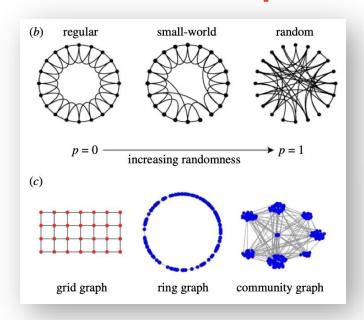


Figure 1. Two different social network models. (*a*) Random links form between sub-group members. As the average number of links per person increases in discrete steps, the network size also increases in predictable, discrete, steps. (b) A structured hierarchy similar to modern military, bureaucratic and corporate structures in which each layer is 'managed' by a coordinator. (Online version in colour.)



Ida Momennejad

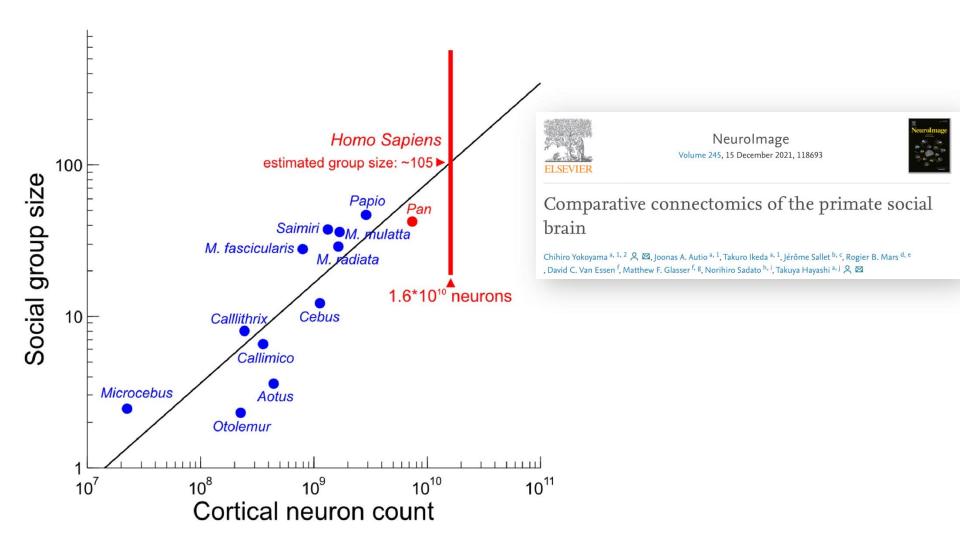
Microsoft Research NYC, New York, NY, USA

Open access 📗 🎯 🚯 📗 Research article 📗 First published online September 13, 2022

Collective intelligence for deep learning: A survey of recent developments

All Articles https://doi.org/10.1177/26339137221114874

Figure 2. Left: Trajan's Bridge at Alcantara, built in AD 106 by Romans (<u>Wikipedia, 2022</u>). Right: Army ants forming a bridge (<u>Jenal, 2011</u>).

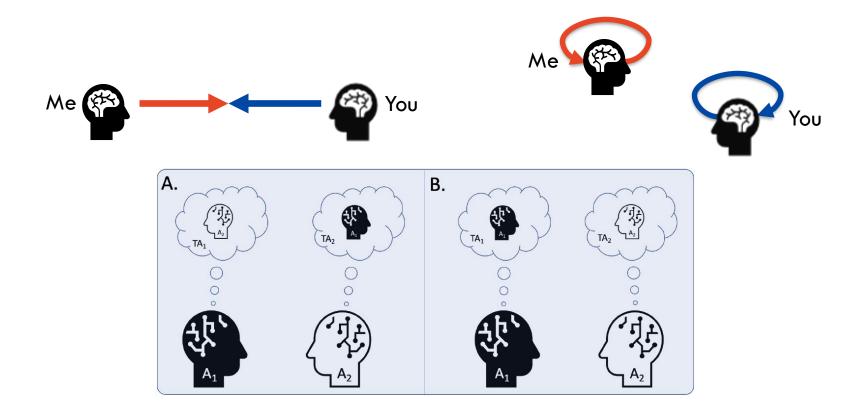


But how do we do it?

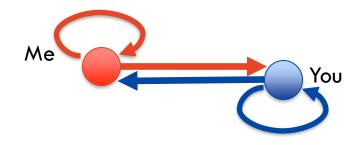
But how do we do it?

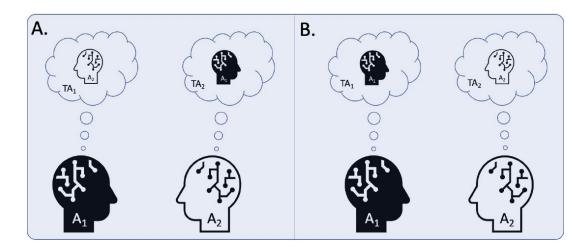
But how do we do it?

But how do we do it?

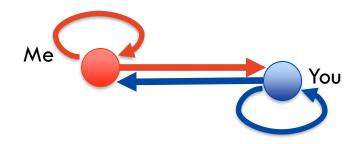


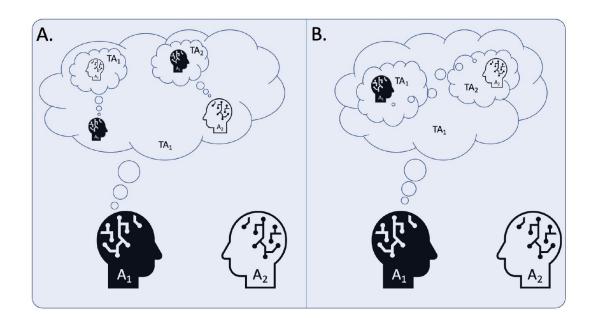
But how do we do it?





But how do we do it?

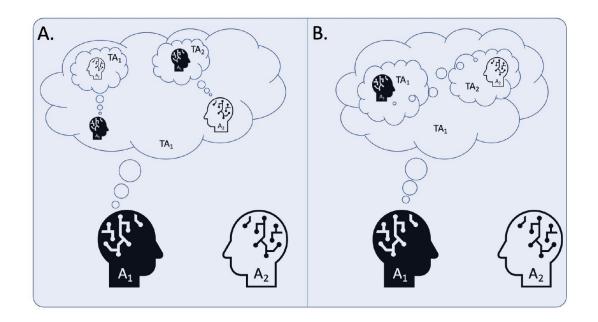




But how do we do it?

"We must try to put ourselves inside their skin and look at us through their eyes, just to understand the thoughts that lie behind their decisions and their actions."

Robert McNamara The Fog of War

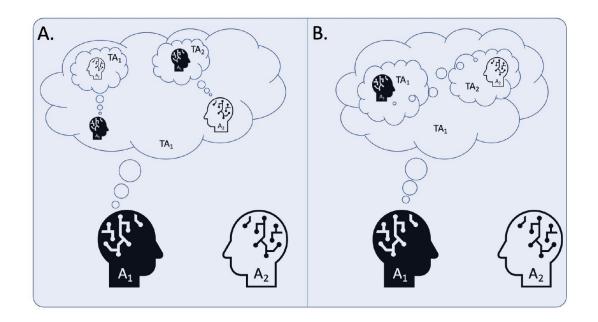


But how do we do it?

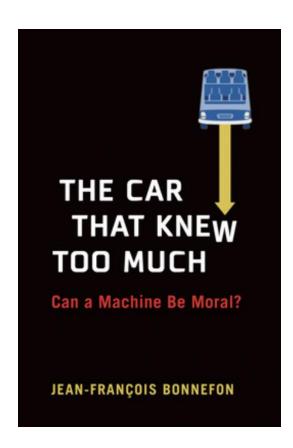
"In the Cuban Missile Crisis [...] we did put ourselves in the skin of the Soviets. In the case of Vietnam, we didn't know them well enough to empathize.

And there was total misunderstanding as a result."

Robert McNamara The Fog of War

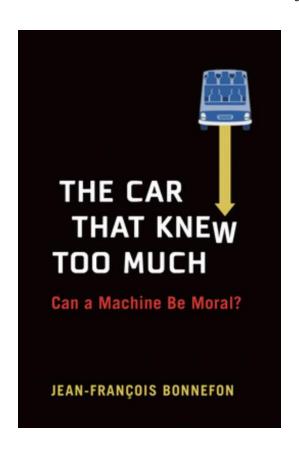


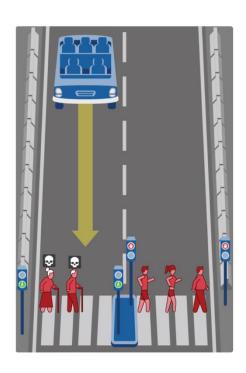
But how do we do it? – It's difficult to get right

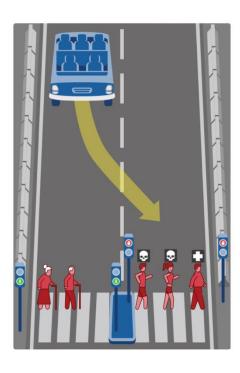


www.moralmachine.net

But how do we do it? – It's difficult to get right

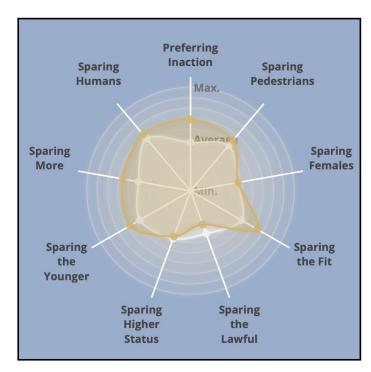






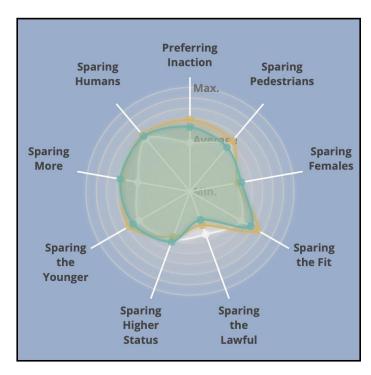
www.moralmachine.net

But how do we do it? – It's difficult to get right



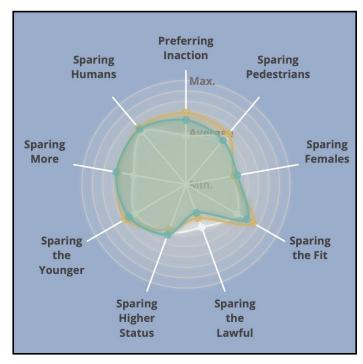
Australia

But how do we do it? – It's difficult to get right

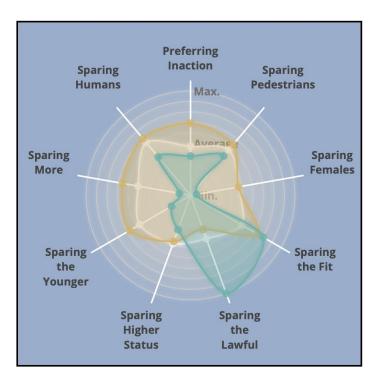


Australia vs USA

But how do we do it? – It's difficult to get right



Australia vs USA



Australia vs Brunei

www.moralmachine.net

Cooperating and competing in the game "Diplomacy"

A deceptively simple, extremely nuanced game, of strategy and cunning.

JFK enjoyed the game, as did Henry Kissinger.

Cooperating and competing in the game "Diplomacy"

To win, a player must not only play strategically, but form alliances, negotiate, persuade, threaten, and occasionally deceive.

Cooperating and competing in the game "Diplomacy"

To win, a player must not only **play strategically**, but form alliances, negotiate, persuade, threaten, and occasionally deceive.

Cooperating and competing in the game "Diplomacy"

To win, a player must not only **play strategically**, but **form alliances**, negotiate, persuade, threaten, and occasionally deceive.

Cooperating and competing in the game "Diplomacy"

To win, a player must not only play strategically, but form alliances, negotiate, persuade, threaten, and occasionally deceive.

Cooperating and competing in the game "Diplomacy"

To win, a player must not only play strategically, but form alliances, negotiate, persuade, threaten, and occasionally deceive.

Cooperating and competing in the game "Diplomacy"

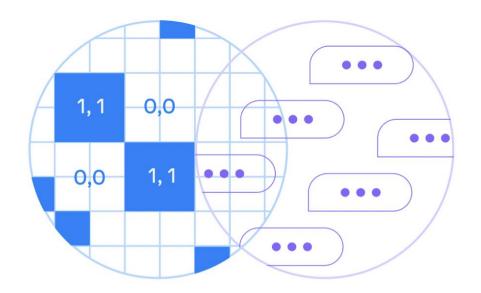
To win, a player must not only play strategically, but form alliances, negotiate, persuade, threaten, and occasionally deceive.

Cooperating and competing in the game "Diplomacy"

It therefore presents challenges for Al that **go far beyond** those faced either by systems that play **games like Go and chess or by chatbots** that engage in dialog in less complex settings.

The Game That Ruins Friendships and Shapes Careers

Cooperating and competing in the game "Diplomacy"



Strategic Reasoning

CICERO predicts the moves other players are likely to make, as well as what moves they expect CICERO to make, and uses that information to create a strategic plan.

Natural Language Processing

CICERO grounds its conversations in a set of carefully chosen plans, so it can negotiate, offer advice, share information, and make agreements with other players.

Cooperating and competing in the game "Diplomacy"

Example of coordination - CICERO is AUSTRIA

ITALY: What are you thinking long term? Should I go for Turkey or head west

Cooperating and competing in the game "Diplomacy"

Example of coordination - CICERO is AUSTRIA

ITALY: What are you thinking long term? Should I go for Turkey or head west

AUSTRIA: Yeah, he went to Armenia which is really great. You can go either way, but if Turkey is committing to Russia you could always lepanto

Cooperating and competing in the game "Diplomacy"

Example of coordination - CICERO is AUSTRIA

ITALY: What are you thinking long term? Should I go for Turkey or head west

AUSTRIA: Yeah, he went to Armenia which is really great. You can go either way, but if Turkey is committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong, especially since he committed so hard against Russia

Cooperating and competing in the game "Diplomacy"

Example of coordination - CICERO is AUSTRIA

ITALY: What are you thinking long term? Should I go for Turkey or head west

AUSTRIA: Yeah, he went to Armenia which is really great. You can go either way, but if Turkey is committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong, especially since he committed so hard against Russia

ITALY: I'm down to go for it. Would definitely need your help in 02 though

Cooperating and competing in the game "Diplomacy"

Example of coordination - CICERO is AUSTRIA

ITALY: What are you thinking long term? Should I go for Turkey or head west

AUSTRIA: Yeah, he went to Armenia which is really great. You can go either way, but if Turkey is committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong, especially since he committed so hard against Russia

ITALY: I'm down to go for it. Would definitely need your help in 02 though

AUSTRIA: Of course, happy to do that!

Cooperating and competing in the game "Diplomacy"

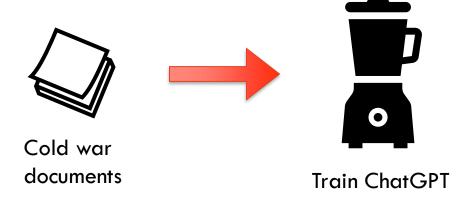
Example of coordination - CICERO is AUSTRIA

ITALY: What are you thinking long term? Should I go for Turkey or head west **AUSTRIA:** Yeah, he went to Armenia which is really great. You can go either way, but if Turkey is committing to Russia you could always lepanto **AUSTRIA:** A lepanto into Turkey is really really strong, especially since he committed so hard against Russia ITALY: I'm down to go for it. Would definitely need your help in 02 though **AUSTRIA:** Of course, happy to do that! **ITALY:** Fantastic!

Lets extend this: AI in the loop policy analysis

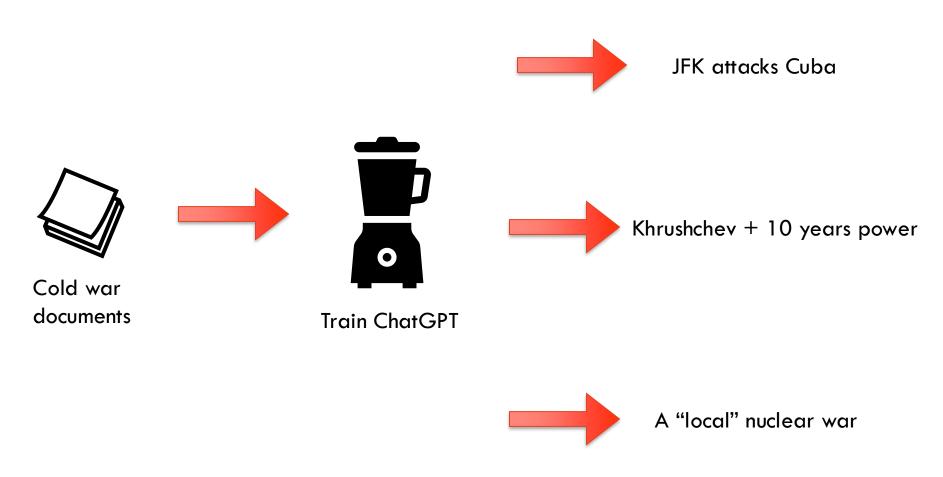
Cold war documents

Lets extend this: AI in the loop policy analysis



Lets extend this: AI in the loop policy analysis

Lets extend this: AI in the loop policy analysis



What is Al up to?

nature

COMMENT | 04 May 2021 www.cooperativeai.org

Cooperative AI: machines must learn to find common ground

To help humanity solve fundamental problems of cooperation, scientists need to reconceive artificial intelligence as deeply social.

 $\underline{\mathsf{Allan\ Dafoe}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Yoram\ Bachrach}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Gillian\ Hadfield}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Eric\ Horvitz}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Kate\ Larson}} \, \underline{\hookrightarrow} \, \& \, \underline{\mathsf{Thore}}$ $\underline{\mathsf{Graepel}} \, \underline{\hookrightarrow} \,$

A huddle at the 2017 United Nations Climate Change Conference, where attendees cooperated on mutually beneficial joint actions on climate. Credit: Sean Gallup/Getty

What is Al up to?

nature

COMMENT | 04 May 2021 www.cooperativeai.org

Cooperative AI: machines must learn to find common ground

To help humanity solve fundamental problems of cooperation, scientists need to reconceive artificial intelligence as deeply social.

 $\underline{\mathsf{Allan\ Dafoe}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Yoram\ Bachrach}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Gillian\ Hadfield}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Eric\ Horvitz}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Kate\ Larson}} \, \underline{\hookrightarrow} \, \& \, \underline{\mathsf{Thore}}$ $\underline{\mathsf{Graepel}} \, \underline{\hookrightarrow} \,$

Tit - for - Tat

Free rider

Cooperative

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

Peter D. Grünwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

Peter D. Grünwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

$$\mathrm{H}(X) := -\sum_{x \in \mathcal{X}} p(x) \log p(x) = \mathbb{E}[-\log p(X)],$$
 Entropy is the expectation of $-\log(\mathrm{p(x)})$

$$H(P,Q) = -\sum_{x \in \mathcal{X}} p(x) \, \log q(x)$$
 (Eq.1)

Definition of "Cross Entropy" for discrete distributions

The Cross Entropy term is the log-loss in a "game against nature": Nature = p(x)

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

Peter D. Grünwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

$$H(P) = \inf_{q \in A} E_P \{-\log q(X)\} \le E_P \{-\log p^*(X)\} = H(P^*),$$

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

Peter D. Grünwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

$$H(P) = \inf_{q \in A} E_P \{-\log q(X)\} \le E_P \{-\log p^*(X)\} = H(P^*),$$

$$\sup_{P \in \Gamma} \mathcal{E}_P \{-\log p^*(X)\} = H(P^*).$$

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

Peter D. Grünwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553

$$H(P) = \inf_{q \in A} E_P \{-\log q(X)\} \le E_P \{-\log p^*(X)\} = H(P^*),$$

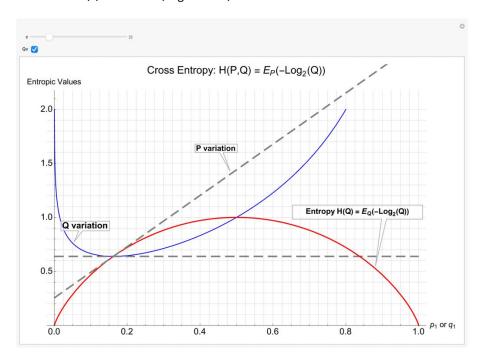
$$\sup_{P \in \Gamma} \mathcal{E}_P \{-\log p^*(X)\} = H(P^*).$$

$$\sup_{P \in \Gamma} \inf_{q \in \mathcal{A}} E_P \{-\log q(X)\} = \inf_{q \in \mathcal{A}} \sup_{P \in \Gamma} E_P \{-\log q(X)\}.$$

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

Peter D. Grünwald, A. Philip Dawid

Ann. Statist. 32(4): 1367-1433 (August 2004). DOI: 10.1214/009053604000000553



Entropy is the minimization of the loss In a game against nature, achieved by the "player" varying q(x)

In the diagram the blue curve is the cross-entropy term for different values of q(x)

The entropy is the red curve for different values of q(x)

Free Energy, Free Utility:

$$H(p) = -\sum_{x} p(x)\log(p(x))$$
 $V(p) = \text{internal energy (potential function)}$
 $F(p) = V(p) - TH(p) \text{ (where T is temperature)}$

Helmholtz Free Energy (1)

Free Energy, Free Utility:

$$H(p) = -\sum_{x} p(x)\log(p(x))$$
 $V(p) = \text{internal energy (potential function)}$
 $F(p) = V(p) - TH(p) \text{ (where T is temperature)}$

Helmholtz Free Energy (1)

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - TH(P) \quad (T \text{ is uncertainty or error})$$
Free Utility (2 players) (2)

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - T H(P) \quad (T \text{ is uncertainty or error})$$
Free Utility (2 players) (2)

Optimising these "free functionals" leads to standard exponential solutions:

$$P(x) \propto \exp(-\beta V(P))$$

$$P(x \mid x = x_i) \propto \exp(\beta U_a(P(y) \mid x = x_i))$$

$$P(y \mid y = y_i) \propto \exp(\beta U_b(P(x) \mid y = y_i))$$

Col:
$$\begin{array}{c|ccc}
U_c & L & R \\
T & a_c & b_c \\
B & c_c & d_c
\end{array}$$
 Row:

Article

$$Col: \begin{array}{c|cc} U_c & L & R \\ \hline T & a_c & b_c \\ B & c_c & d_c \end{array}$$

Row:
$$\begin{array}{c|ccc} U_r & L & R \\ \hline T & a_r & b_r \\ B & c_r & d_r \end{array}$$

$$E(U_c) = \sum_{i,j} p_r(i)p_c(j)U_c^{i,j}$$
$$E(U_r) = \sum_{i,j} p_r(i)p_c(j)U_r^{i,j}$$

$$E(U_r) = \sum_{i,j} p_r(i) p_c(j) U_r^{i,j}$$

Article

$$Col: \begin{array}{c|cc} U_c & L & R \\ \hline T & a_c & b_c \\ B & c_c & d_c \end{array}$$

Col:
$$\begin{bmatrix} U_c & L & R \\ T & a_c & b_c \\ B & c_c & d_c \end{bmatrix}$$
 Row: $\begin{bmatrix} U_r & L & R \\ T & a_r & b_r \\ B & c_r & d_r \end{bmatrix}$

$$E(U_c) = \sum_{i,j} p_r(i) p_c(j) U_c^{i,j}$$
$$E(U_r) = \sum_{i,j} p_r(i) p_c(j) U_r^{i,j}$$

$$E(U_c)_*: \sum_{i,j} p_r(i) p_c^*(j) U_c^{i,j} \geq \sum_{i,j} p_r(i) p_c(j) U_c^{i,j} \, \forall \, p_c(j) \text{ and}$$

$$E(U_r)_*: \sum_{i,j} p_r^*(i) p_c(j) U_r^{i,j} \geq \sum_{i,j} p_r(i) p_c(j) U_c^{i,j} \, \forall \, p_r(i).$$

Article

Col:
$$\begin{array}{c|cccc} U_c & L & R \\ \hline T & a_c & b_c \\ B & c_c & d_c \end{array}$$
 Row:
$$\begin{array}{c|cccc} U_r & L & R \\ \hline T & a_r & b_r \\ B & c_r & d_r \end{array}$$

$$p_x(i) \ge 0 \ \forall i, \ \sum_{i=1}^k p_x(i) = 1, \ \sum_{i,j=1}^k p_r(i)p_c(j)U_x^{i,j} = E(U_x).$$

Article

$$Col: \begin{array}{c|cc} U_c & L & R \\ \hline T & a_c & b_c \\ B & c_c & d_c \end{array}$$

Col:
$$\begin{bmatrix} U_c & L & R \\ T & a_c & b_c \\ B & c_c & d_c \end{bmatrix}$$
 Row: $\begin{bmatrix} U_r & L & R \\ T & a_r & b_r \\ B & c_r & d_r \end{bmatrix}$

$$p_x(i) \geq 0 \,\forall i, \sum_{i=1}^k p_x(i) = 1, \sum_{i,j=1}^k p_r(i)p_c(j)U_x^{i,j} = E(U_x).$$

$$\mathcal{L}(p_x) = S(p_x) + \beta_x \sum_{i,j} p_r(i) p_c(j) U_x^{i,j} + \beta_0 \sum_i p_x(i),$$

Article

$$Col: \begin{array}{c|cc} U_c & L & R \\ \hline T & a_c & b_c \\ B & c_c & d_c \end{array}$$

Col:
$$\begin{bmatrix} U_c & L & R \\ T & a_c & b_c \\ B & c_c & d_c \end{bmatrix}$$
 Row: $\begin{bmatrix} U_r & L & R \\ T & a_r & b_r \\ B & c_r & d_r \end{bmatrix}$

$$p_x(i) \geq 0 \,\forall i, \sum_{i=1}^k p_x(i) = 1, \sum_{i,j=1}^k p_r(i)p_c(j)U_x^{i,j} = E(U_x).$$

$$\mathcal{L}(p_x) = S(p_x) + \beta_x \sum_{i,j} p_r(i) p_c(j) U_x^{i,j} + \beta_0 \sum_i p_x(i),$$

$$\frac{\partial \mathcal{L}(p_x)}{\partial p_x} = -\ln(p_x(i)) + \beta_x \sum_j p_x(j) U_x^{i,j} + \beta_0 - 1 = 0,$$

Article

$$Col: \begin{bmatrix} U_c & L & R \\ T & a_c & b_c \\ B & c_c & d_c \end{bmatrix}$$

Col:
$$\begin{bmatrix} U_c & L & R \\ T & a_c & b_c \\ B & c_c & d_c \end{bmatrix}$$
 Row: $\begin{bmatrix} U_r & L & R \\ T & a_r & b_r \\ B & c_r & d_r \end{bmatrix}$

$$p_x(i) \geq 0 \,\forall i, \sum_{i=1}^k p_x(i) = 1, \sum_{i,j=1}^k p_r(i) p_c(j) U_x^{i,j} = E(U_x).$$

$$\mathcal{L}(p_x) = S(p_x) + \beta_x \sum_{i,j} p_r(i) p_c(j) U_x^{i,j} + \beta_0 \sum_i p_x(i),$$

$$\frac{\partial \mathcal{L}(p_x)}{\partial p_x} = -\ln(p_x(i)) + \beta_x \sum_j p_x(j) U_x^{i,j} + \beta_0 - 1 = 0$$

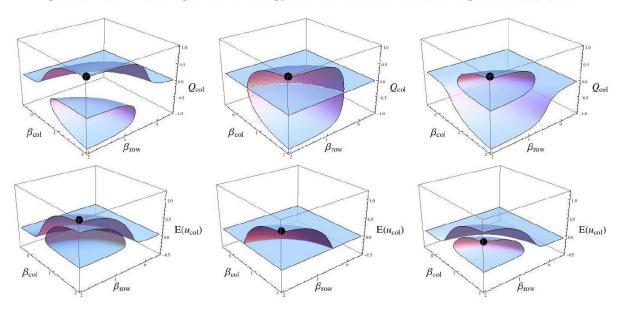
$$\frac{\partial \mathcal{L}(p_x)}{\partial p_x} = -\ln(p_x(i)) + \beta_x \sum_j p_x(j) U_x^{i,j} + \beta_0 - 1 = 0,$$

$$p_x(i) = \mathcal{Z}_x^{-1} \exp\left(\beta_x \sum_j p_x(j) U_x^{i,j}\right),$$

$$= \mathcal{Z}_x^{-1} \exp\left(\beta_x E(U_x | s_x = i)\right),$$
This the Quantal Response Equilibrium (QRE)

Article

Figure 4. Perturbed QRE solutions for $\delta_c = \delta_r \in \{0.2, 0, -0.2\}$ from left to right with a β pair $\beta_c = \beta_r = 2$, the equilibrium strategy is where the black dot is, see Equations (38)–(39).

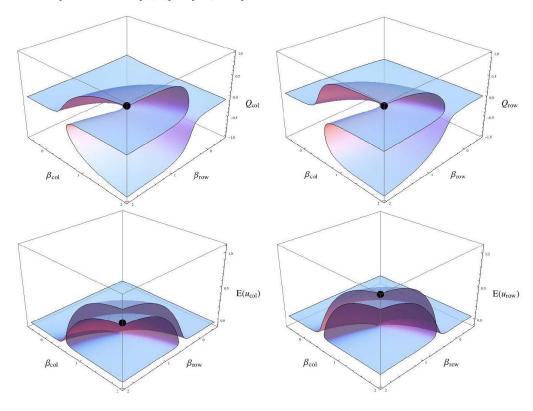


Article

Strategic Islands in Economic Games: Isolating Economies From Better Outcomes

Michael S. Harré 1,* and Terry Bossomaier 2

Figure 6. Perturbed QRE solutions for both players for Q values and the corresponding expected utilities: $\{\delta_r, \delta_c\} = \{0.2, -0.2\}.$



Article

Strategic Islands in Economic Games: Isolating Economies From Better Outcomes

Michael S. Harré 1,* and Terry Bossomaier 2

3.1. Free Energy in Physics

We first introduce the Helmholtz free energy \mathscr{F}_p used in physics as the internal energy of the system V(x) having discrete states x less the Shannon entropy of the system:

$$H(x) = -\sum_{i} P(x_i) \log (P(x_i))$$
(3)

multiplied by the temperature of the system *T*:

$$\mathscr{F}_p = V(x) - TH(x). \tag{4}$$

Information Theory for Agents in Artificial Intelligence, Psychology, and Economics

by 🚇 Michael S. Harré 🖾 💿

3.2. Free Utility in Economics

Equation (4) has an economic counterpart that appears, for example, in the earlier work of Wolpert [57,58] on predictive game theory and collective intelligence. In its simplest form an agent chooses a distribution p over the utilities $U(x_i)$ over a finite set of discrete choices $\{x_i\}$ such that they have an expected utility:

$$E_{p}\left[U\left(x
ight)
ight] = \sum_{i} p_{i}U\left(x_{i}
ight)$$
 (5)

The 'free utility' of this situation is given by:

$$\mathscr{F}_{q} = E_{q}[U(x)] - TH(x), \tag{6}$$

Information Theory for Agents in Artificial Intelligence, Psychology, and Economics

by 🙆 Michael S. Harré 🖾 💿

Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia

$$P(x_i) = \mathscr{Z}^{-1} e^{\beta E_p[G(x)]} \tag{7}$$

with ${\mathscr Z}$ normalising the distribution and the free energy is:

$$\mathscr{F}(p) = \frac{\partial \mathscr{Z}}{\partial \beta} + \beta^{-1} \sum_{x} P(x) \log (P(x)), \qquad (8)$$

$$= E_p[G(x)] - \beta^{-1}H(x),$$

$$= \text{Utility} - \beta^{-1} \text{Entropy}.$$
(9)

Information Theory for Agents in Artificial Intelligence, Psychology, and Economics

by 🚇 Michael S. Harré 🖾 💿

Complex Systems Research Group, Faculty of Engineering, The University of Sydney, Sydney 2006, Australia

The free energy expression: Substituting the last two distributions into Equation (17) we have the following form:

$$\mathscr{F}(Q(\tilde{s},\tilde{u})) = E_Q[-\log(P(\tilde{o},\tilde{s},\tilde{u}|m))] - H(Q(\tilde{s},\tilde{u})), \tag{25}$$

$$\Rightarrow Q(\tilde{s}, \tilde{u}) = \arg \min_{Q} \mathscr{F}(Q(\tilde{s}, \tilde{u})). \tag{26}$$

Information Theory for Agents in Artificial Intelligence, Psychology, and Economics

by 🙆 Michael S. Harré [☑] 🍥

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127–138 (2010) | Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s,o) = P(o|s)P(s)$$

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s, o) = P(o|s)P(s)$$

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

$$Q^*(s) = \underset{Q(s)}{\operatorname{argmin}} \mathcal{F}(Q)$$
 (3)

$$Q^*(s) \simeq P(s|o) \tag{4}$$

Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) Cite this article

Friston's Free Energy Principle:

One of the goals of Friston's work is to estimate the joint probability of states observed o and actual states s via Bayes Theorem:

$$P(s, o) = P(o|s)P(s)$$

This calculation is often too difficult to compute directly so Friston's "Free Energy Principle" for the brain addresses this by estimating an alternative probability Q(s) via opitmisation:

$$Q^*(s) = \underset{Q(s)}{\operatorname{argmin}} \mathcal{F}(Q)$$
 (3)

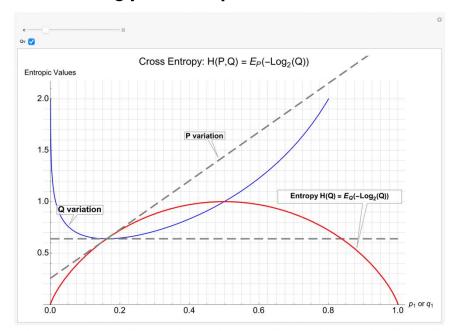
$$Q^*(s) \simeq P(s|o) \tag{4}$$

$$\mathcal{F}(Q) = E_Q[\log(Q(s)) - \log(P(s|o))]$$
 (5)

$$= \underbrace{E_{Q}(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$
(6)

Friston's Free Energy Principle:

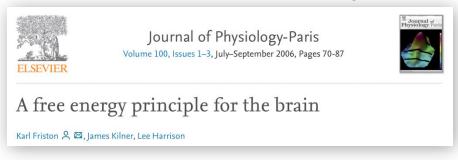


$$\mathcal{F}(Q) = E_O[\log(Q(s)) - \log(P(s|o))]$$
 (5)

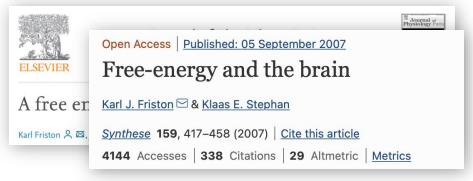
$$= \underbrace{E_Q(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$
(6)

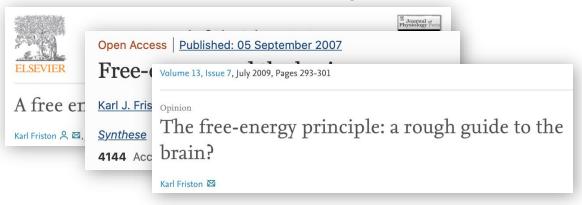
There is a lot more work by Friston and colleagues



There is a lot more work by Friston and colleagues

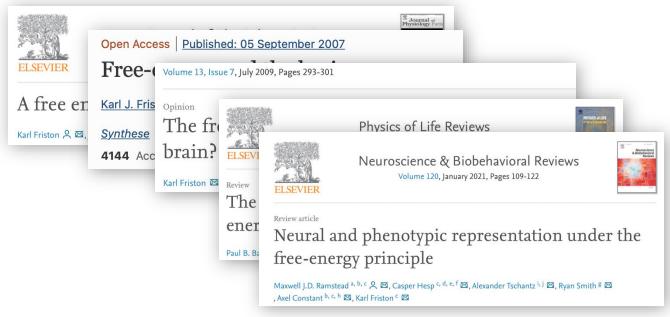


There is a lot more work by Friston and colleagues



There is a lot more work by Friston and colleagues

There is a lot more work by Friston and colleagues



Published: 13 January 2010

The free-energy principle: a unified brain theory?

Karl Friston

Nature Reviews Neuroscience 11, 127-138 (2010) | Cite this article

But these are the three ideas to take away from this section:

$$\mathcal{F}(Q) = E_{Q}[\log(Q(s)) - \log(P(s|o))]$$

$$= \underbrace{E_{Q}(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$

note: Grunwald and Dawid showed that this is a "game" between nature and decision maker (2004)

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

PD Grünwald, AP Dawid - the Annals of Statistics, 2004 - projecteuclid.org

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x, y)]$$
 (expected utility for a)

$$\mathcal{F}(P) = U_a(P) - T H(P)$$
 (*T* is uncertainty or error)

Optimising these "free functionals" leads to standard exponential solution

We have a Markov Decision Process: $M = \{S, \mathcal{A}, \mathcal{T}, r\}$

- $\rightarrow s \in S$ is a state in the state space,
- $\rightarrow a \in \mathcal{A}$ is an action in the action space of the agent
- \rightarrow T is the transition model from one state to another
- $\rightarrow r(s_t)$ is the reward, a function of the state s at time t
- $\to \pi$: $S \times \mathcal{A} \in [0, 1]$ is an agent's "policy", a state-action tuple mapping s_t and a_t to a probability at time t

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems

by 🙎 Jaime Ruiz-Serra [©] and 🚇 Michael S. Harré ^{*} ☑ [©]

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia

We have a Markov Decision Process: $M = \{S, \mathcal{A}, \mathcal{T}, r\}$

- $\rightarrow s \in S$ is a state in the state space,
- $\rightarrow a \in \mathcal{A}$ is an action in the action space of the agent
- \rightarrow T is the transition model from one state to another
- $\rightarrow r(s_t)$ is the reward, a function of the state s at time t
- $\to \pi$: $S \times \mathcal{A} \in [0, 1]$ is an agent's "policy", a state-action tuple mapping s_t and a_t to a probability at time t

The transition model is a probability distribution:

$$T: P_a(s'|s) = P(s' = s_t | s = s_{t-1}, a_t)$$

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems

by <a>Q Jaime Ruiz-Serra <a>O and <a>O Michael S. Harré <a>O <a>O</

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia

We have a Markov Decision Process: $M = \{S, \mathcal{A}, \mathcal{T}, r\}$

- $\rightarrow s \in S$ is a state in the state space,
- $\rightarrow a \in \mathcal{A}$ is an action in the action space of the agent
- $\rightarrow \mathcal{T}$ is the transition model from one state to another
- $\rightarrow r(s_t)$ is the reward, a function of the state s at time t
- $\to \pi: S \times \mathcal{A} \in [0, 1]$ is an agent's "policy", a state-action tuple mapping s_t and a_t to a probability at time t

The transition model is a probability distribution:

$$\mathcal{T}$$
: $P_a(s'|s) = P(s' = s_t | s = s_{t-1}, a_t)$

The agent's policy is a probability function:

$$\pi = P(a = a_t | s = s_t)$$

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems

by <a>Q Jaime Ruiz-Serra <a>O and <a>O Michael S. Harré <a>O <a>O</

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia

We have a Markov Decision Process: $M = \{S, \mathcal{A}, \mathcal{T}, r\}$

- $\rightarrow s \in S$ is a state in the state space,
- $\rightarrow a \in \mathcal{A}$ is an action in the action space of the agent
- $\rightarrow \mathcal{T}$ is the transition model from one state to another
- $\rightarrow r(s_t)$ is the reward, a function of the state s at time t
- $\to \pi$: $S \times \mathcal{A} \in [0, 1]$ is an agent's "policy", a state-action tuple mapping s_t and a_t to a probability at time t

The transition model is a probability distribution:

$$T: P_a(s'|s) = P(s' = s_t | s = s_{t-1}, a_t)$$

The agent's policy is a probability function:

$$\pi = P(a = a_t | s = s_t)$$

An optimal policy for $\pi: S \mapsto \mathcal{A}$ is that π^* which maximises the expected accumulation of reward = long term discounted value, i.e. the following expected value:

 $V(\mathbf{s}) = E(r(s_1) + \gamma r(s_2) + \gamma^2 r(s_3) + \dots \mid \pi)$ where $\gamma \in [0, 1] = \text{discount (Bellman's Equation for policy } \pi)$

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems

by 🛜 Jaime Ruiz-Serra [©] and 🙆 Michael S. Harré * ☑ [©]

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia

The reward function (here, cost to be minimised) R comprises a state term $r(s) \ge 0$ (to be inferred) and a control term that is the KL-divergence between the control dynamics and the passive dynamics (in order for the KL divergence to be defined, it is required that $\pi(s'|s) = 0$ when $\Pr(s'|s) = 0$, a condition that is imposed),

$$R(s, \pi(\cdot|s)) = r(s) + D_{KL}(\pi(\cdot|s)||\Pr(\cdot|s)). \tag{41}$$

A desirability function $z(s) = \exp(-V(s))$ is used to define the optimal control dynamics

$$\pi^*(s'|s) = \frac{\Pr(s'|s)z(s')}{\sum_{\zeta} \Pr(\zeta|s)z(\zeta)}.$$
(42)

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems

by <a>Q Jaime Ruiz-Serra <a>O and <a>O Michael S. Harré <a>O <a>O</

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia

The reward function (here, cost to be minimised) R comprises a state term $r(s) \ge 0$ (to be inferred) and a control term that is the KL-divergence between the control dynamics and the passive dynamics (in order for the KL divergence to be defined, it is required that $\pi(s'|s) = 0$ when $\Pr(s'|s) = 0$, a condition that is imposed),

$$R(s, \pi(\cdot|s)) = r(s) + D_{KL}(\pi(\cdot|s)||\Pr(\cdot|s)). \tag{41}$$

A desirability function $z(s) = \exp(-V(s))$ is used to define the optimal control dynamics

$$\pi^*(s'|s) = \frac{\Pr(s'|s)z(s')}{\sum_{\zeta} \Pr(\zeta|s)z(\zeta)}.$$
(42)

Under passive dynamics, $\Pr(\tau|s_0) = \prod_{t=1}^{H} \Pr(s_t|s_{t-1})$ is the probability of a trajectory. For the same trajectory to occur when the control dynamics are applied, the probability is

$$\Pr(\tau|s_0, \pi) = \frac{\Pr(\tau|s_0) \exp\left(-\sum_{t=0}^{H} r(s_t)\right)}{z(s_0)}.$$
(44)

Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and Open Problems

by <a>Q Jaime Ruiz-Serra <a>O and <a>Q Michael S. Harré <a>D <a>O <a>

Modelling and Simulation Research Group, School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia

Now compare the reinforcement learning algorithm:

$$R(s, \pi(\cdot|s)) = r(s) + D_{KL}(\pi(\cdot|s)|| \Pr(\cdot|s)).$$

Now compare the reinforcement learning algorithm's reward:

$$R(s, \pi(\cdot|s)) = r(s) + D_{KL}(\pi(\cdot|s)|| \Pr(\cdot|s)).$$

With the following decomposition of the KL-divergence:

$$U(\pi_i, \pi_{-i}) = u(\pi_i, \pi_{-i}) + \lambda D_{KL}(\pi_i \mid \tau_i)$$

Now compare the reinforcement learning algorithm:

$$R(s, \pi(\cdot|s)) = r(s) + D_{KL}(\pi(\cdot|s)|| \Pr(\cdot|s)).$$

With the following decomposition of the KL-divergence:

$$U(\pi_{i}, \pi_{-i}) = u(\pi_{i}, \pi_{-i}) + \lambda D_{KL} (\pi_{i} | \tau_{i})$$

$$= u(\pi_{i}, \pi_{-i}) + \lambda \left(-\underbrace{H(\pi_{i})}_{\text{Entropy}} + \underbrace{H(\pi_{i}, \tau_{i})}_{\text{cross entropy}}\right)$$

$$\underbrace{Log-loss\ game}$$

Now compare the reinforcement learning algorithm:

$$R(s, \pi(\cdot|s)) = r(s) + D_{KL}(\pi(\cdot|s)|| \Pr(\cdot|s)).$$

With the following decomposition of the KL-divergence:

$$U(\pi_{i}, \pi_{-i}) = u(\pi_{i}, \pi_{-i}) + \lambda D_{KL} (\pi_{i} | \tau_{i})$$

$$= u(\pi_{i}, \pi_{-i}) + \lambda \left(-\underbrace{H(\pi_{i})}_{\text{Entropy}} + \underbrace{H(\pi_{i}, \tau_{i})}_{\text{cross entropy}}\right)$$

$$\underbrace{Log-loss\ game}$$

$$= \underbrace{u(\pi_{i}, \pi_{-i}) + \lambda(\underline{-H(\pi_{i})} + \underline{H(\pi_{i}, \tau_{i})}}_{\text{Entropy}} + \underbrace{H(\pi_{i}, \tau_{i})}_{\text{cross entropy}}$$

Which has the following "equilibrium" solution by MaxEnt optimization:

$$p(a_i \mid \pi_{-i}) = p(a_i) \exp\left(\lambda^{-1} u(a_i \mid \pi_{-i})\right) Z^{-1}$$

$$U(\pi_i, \pi_{-i}) = u(\pi_i, \pi_{-i}) + \lambda D_{KL} (\pi_i \mid \tau_i)$$

$$= u(\pi_i, \pi_{-i}) + \lambda \left(-\underline{H(\pi_i)} + \underline{H(\pi_i, \tau_i)}\right)$$

$$= u(\pi_i, \pi_{-i}) + \lambda \left(-\underline{H(\pi_i)} + \underline{H(\pi_i, \tau_i)}\right)$$

$$= u(\pi_i, \pi_{-i}) + \lambda \left(-\underline{H(\pi_i)} + \underline{H(\pi_i, \tau_i)}\right)$$

$$= u(\pi_i, \pi_{-i}) + \lambda \left(-\underline{H(\pi_i)} + \underline{H(\pi_i, \tau_i)}\right)$$

Entropy cross entropy

The essential point of this section are these relationships, the KL-Divergence is an extension of MaxEnt and Free Energy principles:

$$\mathcal{F}(Q) = E_{Q}[\log(Q(s)) - \log(P(s|o))]$$

$$= \underbrace{E_{Q}(-\log(P(s|o)))}_{\text{cross entropy}} - \underbrace{H(Q(s))}_{\text{entropy}}$$

$$= \text{expected log loss}$$

$$H(P) = -\sum_{x,y} P(x,y) \log(P(x,y))$$

$$U_a(P) = E_p[U_a(x,y)] \text{ (expected utility for } a)$$

$$\mathcal{F}(P) = U_a(P) - T H(P) \quad (T \text{ is uncertainty or error})$$

$$U(\pi_{i}, \pi_{-i}) = u(\pi_{i}, \pi_{-i}) + \lambda D_{KL} (\pi_{i} \mid \tau_{i})$$

$$= u(\pi_{i}, \pi_{-i}) + \lambda \left(-\underline{H(\pi_{i})} + \underline{H(\pi_{i}, \tau_{i})}\right)$$

$$= \underbrace{u(\pi_{i}, \pi_{-i}) + \lambda \left(-\underline{H(\pi_{i})} + \underline{H(\pi_{i}, \tau_{i})}\right)}_{\text{Entropy}}$$

$$= \underbrace{u(\pi_{i}, \pi_{-i}) + \lambda \left(-\underline{H(\pi_{i})} + \underline{H(\pi_{i}, \tau_{i})}\right)}_{\text{Entropy}}$$

$$= \underbrace{u(\pi_{i}, \pi_{-i}) + \lambda \left(-\underline{H(\pi_{i})} + \underline{H(\pi_{i}, \tau_{i})}\right)}_{\text{Entropy}}$$

Grunwald and Dawid showed that this is a "game" between nature and decision maker (2004)

Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory

PD Grünwald, AP Dawid - the Annals of Statistics, 2004 - projecteuclid.org

This is the game theory version of MaxEnt or equivalently the "Free Utility" optimization

This is a combination of the above equations

Review

Inverse Reinforcement Learning as an Algorithmic Approach to Theory of Mind: Current Methods and Open Problems

Jaime Ruiz-Serra ¹ and Michael Harré ¹,*

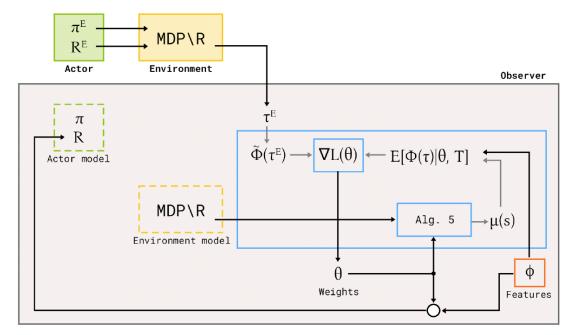


Figure 3. Diagram of the MaxEnt IRL algorithm (see Algorithm 6)

Testing 'Theory of Mind' models for AI

Michael S. Harré

School of Computer Science The University of Sydney Sydney, Australia, 2006 michael.harre@sydney.edu.au

Husam El-Tarifi

Oxford Economics Australia Sydney, Australia, 2000 heltarifi@oxfordeconomics.com

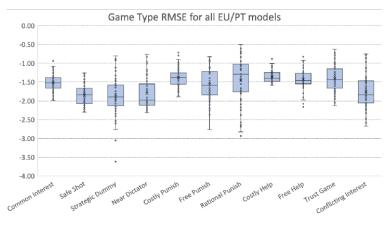


Figure 5: Log₁₀ transformed RMSE performance distribution of all EU-PT models dis-aggregated by game type. Logs highlight the low value tails for 'best in class' data points with low RMSE values.

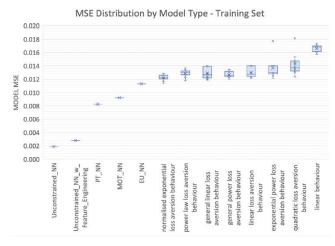
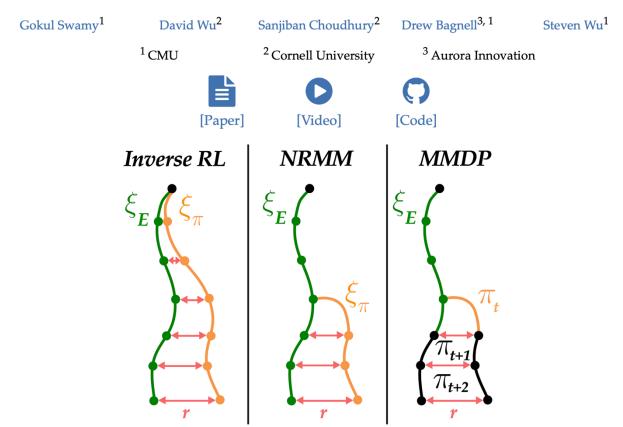


Figure 2: Root Mean Square Error results for each utility and neural network model using the training data.

Inverse Reinforcement Learning without Reinforcement Learning

ICML '23



nature

COMMENT | 04 May 2021 www.cooperativeai.org

Cooperative AI: machines must learn to find common ground

To help humanity solve fundamental problems of cooperation, scientists need to reconceive artificial intelligence as deeply social.

 $\underline{\mathsf{Allan\ Dafoe}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Yoram\ Bachrach}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Gillian\ Hadfield}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Eric\ Horvitz}} \, \underline{\hookrightarrow} \,, \, \underline{\mathsf{Kate\ Larson}} \, \underline{\hookrightarrow} \, \& \, \underline{\mathsf{Thore}}$ $\underline{\mathsf{Graepel}} \, \underline{\hookrightarrow} \,$

A huddle at the 2017 United Nations Climate Change Conference, where attendees cooperated on mutually beneficial joint actions on climate. Credit: Sean Gallup/Getty